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This	page	explains	the	logic	of	binomial	option	pricing	models	how	option	price	is	calculated	from	the	inputs	using	binomial	trees,	and	how	these	trees	are	built.All	models	simplify	reality,	in	order	to	make	calculations	possible,	because	the	real	world	(even	a	simple	thing	like	stock	price	movement)	is	often	too	complex	to	describe	with	mathematical
formulas.Binomial	option	pricing	models	make	the	following	assumptions.Discrete	StepsPrices	don't	move	continuously	(as	Black-Scholes	model	assumes),	but	in	a	series	of	discrete	steps.Time	between	steps	is	constant	and	easy	to	calculate	as	time	to	expiration	divided	by	the	model's	number	of	steps.For	example,	if	you	want	to	price	an	option	with
20	days	to	expiration	with	a	5-step	binomial	model,	the	duration	of	each	step	is	20/5	=	4	days.	Once	every	4	days,	price	makes	a	move.Up	and	Down	MovesAt	each	step,	the	price	can	only	do	two	things	(hence	binomial):	Go	up	or	go	down.The	sizes	of	these	up	and	down	moves	are	constant	(percentage-wise)	throughout	all	steps,	but	the	up	move	size
can	differ	from	the	down	move	size.For	instance,	at	each	step	the	price	can	either	increase	by	1.8%	or	decrease	by	1.5%.	These	exact	move	sizes	are	calculated	from	the	inputs,	such	as	interest	rate	and	volatility.Like	sizes,	the	probabilities	of	up	and	down	moves	are	the	same	in	all	steps.	They	must	sum	up	to	1	(or	100%),	but	they	don't	have	to	be
50/50.	Like	sizes,	they	are	calculated	from	the	inputs.For	example,	from	a	particular	set	of	inputs	you	can	calculate	that	at	each	step,	the	price	has	48%	probability	of	going	up	1.8%	and	52%	probability	of	going	down	1.5%.This	is	all	you	need	for	building	binomial	trees	and	calculating	option	price.How	to	Calculate	Option	PriceThese	are	the	things	to
do	(not	using	the	word	steps,	to	avoid	confusion)	to	calculate	option	price	with	a	binomial	model:Know	your	inputs	(underlying	price,	strike	price,	volatility	etc.).From	the	inputs,	calculate	up	and	down	move	sizes	and	probabilities.Build	underlying	price	tree	from	now	to	expiration,	using	the	up	and	down	move	sizes.The	final	step	in	the	underlying
price	tree	shows	different	underlying	prices	at	expiration	for	different	scenarios.From	the	above,	calculate	option	payoff	at	expiration	for	different	scenarios	=	the	final	step	in	the	option	price	tree.Build	the	option	price	tree	backwards	from	expiration	to	now.The	price	at	the	beginning	of	the	option	price	tree	is	the	current	option	price.Underlying
Price	TreeWe	have	already	explained	the	logic	of	points	1-2.	Exact	formulas	for	move	sizes	and	probabilities	differ	between	individual	models	(for	details	see	Cox-Ross-Rubinstein,	Jarrow-Rudd,	Leisen-Reimer).	The	rest	is	the	same	for	all	models.For	now,	let's	use	some	round	values	to	explain	how	binomial	trees	work:Up	and	down	move	sizes	+1%	and
-1%Probabilities	50%	eachCurrent	underlying	stock	price	$100The	simplest	possible	binomial	model	has	only	one	step.	A	one-step	underlying	price	tree	with	our	parameters	looks	like	this:It	starts	with	current	underlying	price	(100.00)	on	the	left.	From	there	price	can	go	either	up	1%	(to	101.00)	or	down	1%	(to	99.00).There	is	no	theoretical	upper
limit	on	the	number	of	steps	a	binomial	model	can	have.	Generally,	more	steps	means	greater	precision,	but	also	more	calculations.	In	this	tutorial	we	will	use	a	7-step	model.Binomial	Tree	CharacteristicsIndividual	steps	are	in	columns.The	first	column,	which	we	can	call	step	0,	is	current	underlying	price.In	each	successive	step,	the	number	of
possible	prices	(nodes	in	the	tree),	increases	by	one.The	number	of	nodes	in	the	final	step	(the	number	of	possible	underlying	prices	at	expiration)	equals	number	of	steps	+	1.There	are	two	possible	moves	from	each	node	to	the	next	step	up	or	down.There	are	also	two	possible	moves	coming	into	each	node	from	the	preceding	step	(up	from	a	lower
price	or	down	from	a	higher	price),	except	nodes	on	the	edges,	which	have	only	one	move	coming	in.Calculating	the	TreeKnowing	the	current	underlying	price	(the	initial	node)	and	up	and	down	move	sizes,	we	can	calculate	the	entire	tree	from	left	to	right.Each	node	can	be	calculated	either	by	multiplying	the	preceding	lower	node	by	up	move	size
(e.g.	by	1.02	if	up	move	is	+2%),	or	by	multiplying	the	preceding	higher	node	by	down	move	size.	Both	should	give	the	same	result,	because	a	b	=	b	a.Paths	and	ProbabilitiesThere	can	be	many	different	paths	from	the	current	underlying	price	to	a	particular	node.	For	instance,	up-up-down	(green),	up-down-up	(red),	down-up-up	(blue)	all	result	in	the
same	price,	and	the	same	node.Notice	how	the	nodes	around	the	(vertical)	middle	of	the	tree	have	many	possible	paths	coming	in,	while	the	nodes	on	the	edges	only	have	a	single	path	(all	ups	or	all	downs).	This	reflects	reality	it	is	more	likely	for	price	to	stay	the	same	or	move	only	a	little	than	to	move	by	an	extremely	large	amount.If	you	are	thinking
of	a	bell	curve,	you	are	right.	With	growing	number	of	steps,	number	of	paths	to	individual	nodes	approaches	the	familiar	bell	curve.Option	Payoff	at	ExpirationThe	last	step	in	the	underlying	price	tree	gives	us	all	the	possible	underlying	prices	at	expiration.	For	each	of	them,	we	can	easily	calculate	option	payoff	the	option's	value	at	expiration.Two
things	can	happen	at	expiration.If	the	option	ends	up	in	the	money,	we	exercise	it	and	gain	the	difference	between	underlying	price	S	and	strike	price	K:From	a	call,	we	gain	S	K.From	a	put	we	gain	K	S.If	the	above	differences	(potential	gains	from	exercising)	are	negative,	we	choose	not	to	exercise	and	just	let	the	option	expire.	The	option's	value	is
zero	in	such	case.Therefore,	option	value	at	expiration	is:C	=	max(0,	S	K)P	=	max(0,	K	S)These	option	values,	calculated	for	each	node	from	the	last	column	of	the	underlying	price	tree,	are	in	fact	the	option	prices	in	the	last	column	of	the	option	price	tree.Option	Price	TreeWhile	underlying	price	tree	is	calculated	from	left	to	right,	option	price	tree	is
calculated	backwards	from	the	set	of	payoffs	at	expiration,	which	we	have	just	calculated,	to	current	option	price.Each	node	in	the	option	price	tree	is	calculated	from	the	two	nodes	to	the	right	from	it	(the	node	one	move	up	and	the	node	one	move	down).We	already	know	the	option	prices	in	both	these	nodes	(because	we	are	calculating	the	tree	right
to	left).We	also	know	the	probabilities	of	each	(the	up	and	down	move	probabilities).With	all	that,	we	can	calculate	the	option	price	as	weighted	average,	using	the	probabilities	as	weights:...	where	Ou	and	Od	are	option	prices	at	next	step	after	up	and	down	move,	andp	is	probability	of	up	move	(therefore	1	p	must	be	probability	of	down	move).But	we
are	not	done.	We	must	discount	the	result	to	account	for	time	value	of	money,	because	the	above	expression	is	expected	option	value	at	next	step,	but	we	want	its	present	value,	one	step	earlier.	The	discount	factor	is:...	where	r	is	the	risk-free	interest	rate	and	t	is	duration	of	one	step	in	years,	calculated	as	t/n,	where	t	is	time	to	expiration	in	years
(days	to	expiration	/	365),	and	n	is	number	of	steps.The	formula	for	option	price	in	each	node	(same	for	calls	and	puts)	is:Using	this	formula,	we	can	calculate	option	prices	in	all	nodes	going	right	to	left	from	expiration	to	the	first	node	of	the	tree	which	is	the	current	option	price,	the	ultimate	output.American	Options	and	Early	ExerciseThe	above
formula	holds	for	European	options,	which	can	be	exercised	only	at	expiration.	This	is	why	I	have	used	the	letter	E,	as	European	option	or	expected	value	if	we	hold	the	option	until	next	step.American	options	can	be	exercised	early.	We	must	check	at	each	node	whether	it	is	profitable	to	exercise,	and	adjust	option	price	accordingly.American	option
price	will	be	the	greater	of:What	we	would	gain	from	exercisingThe	option's	expected	value	when	not	exercising	=	EWe	need	to	compare	the	option	price	E	with	the	option's	intrinsic	value,	which	is	calculated	exactly	the	same	way	as	payoff	at	expiration:C	=	max(0,	S	K)P	=	max(0,	K	S)...	where	S	is	the	underlying	price	tree	node	whose	location	is	the
same	as	the	node	in	the	option	price	tree	which	we	are	calculating.If	intrinsic	value	is	higher	than	E,	the	option	should	be	exercised.	Option	price	equals	the	intrinsic	value.Otherwise	(it	is	not	profitable	to	exercise,	so	we	keep	holding	the	option)	option	price	equals	E.This	is	probably	the	hardest	part	of	binomial	option	pricing	models,	but	it	is	the	logic
that	is	hard	the	mathematics	is	quite	simple.When	implementing	this	in	Excel,	it	means	combining	some	IFs	and	MAXes:IF	the	option	is	American,	option	price	is	MAX	of	intrinsic	value	and	E.Otherwise	(it's	European)	option	price	is	E.IF	the	option	is	a	call,	intrinsic	value	is	MAX	of	zero	and	S	K.Otherwise	(it's	a	put)	intrinsic	value	is	MAX	of	zero	and
K	S.We	will	create	both	binomial	trees	in	Excel	in	the	next	part.Event:	Lehman	Brothers	filed	for	bankruptcy	on	September	15,	2008the	largest	in	U.S.	history.Role	in	OTC	Market:	Heavily	involved	in	high-risk	derivatives.Cause:	Inability	to	refinance	short-term	debt.At	the	time	of	its	bankruptcy,	Lehman	Brothers	had	an	extensive	network	of
transactions,	with	hundreds	of	thousands	outstanding	across	approximately	8,000	counterparties.	The	process	of	unwinding	these	transactions	has	posed	significant	challenges	for	both	the	Lehman	liquidators	and	the	involved	counterparties,	illustrating	the	complex	and	interconnected	nature	of	modern	financial	markets.Portfolio:Value	=	$500,000\
(\beta\)	=	2.0Index	=	1,000Target	insured	value	=	$450,000Risk-free	rate	=	12%	p.a.,	dividend	yield	=	4%Contracts	Required:\[\frac{500{,}000}{100	\times	1{,}000}	\times	2	=	10\]	put	optionsIndex	rises	to	1,040	in	3	months:	4%	returnTotal	return:	5%	(4%	price	+	1%	dividends)Excess	return:	\(5\%	-	3\%	=	2\%\)	(quarterly	risk-free	rate)Portfolio
excess	return:	\(2\%	\times	2	=	4\%\)Net	return:	\(4\%	+	3\%	-	1\%	=	6\%\)Projected	portfolio	value:\[500{,}000	\times	1.06	=	530{,}000\]Result:	Similar	calculations	can	be	carried	out	for	other	values	of	the	index	at	the	end	of	the	three	months.	Appropriate	strike	price	for	the	10	put	option	contracts	that	are	purchased	is	960	(or	955	when	we	include
dividends).Index	in	3	MonthsPortfolio	Value	in	3	Months	($)1,080570,0001,040530,0001,000490,000960450,000920410,000880370,000	When	I	first	encountered	option	pricing	theory,	I	found	it	both	fascinating	and	intimidating.	The	idea	that	we	could	mathematically	model	the	value	of	financial	derivatives	seemed	almost	magical.	Over	time,	I
realized	that	the	key	to	understanding	this	lies	in	breaking	down	the	concepts	into	manageable	pieces.	One	of	the	most	intuitive	and	widely	used	models	in	this	field	is	the	Binomial	Model.	In	this	article,	Ill	walk	you	through	the	Binomial	Model,	its	assumptions,	applications,	and	how	it	compares	to	other	pricing	models.	By	the	end,	youll	have	a	solid
grasp	of	how	this	model	works	and	why	its	so	important	in	finance.	Option	pricing	theory	is	a	framework	used	to	determine	the	fair	value	of	financial	options.	An	option	is	a	contract	that	gives	the	buyer	the	right,	but	not	the	obligation,	to	buy	or	sell	an	underlying	asset	at	a	predetermined	price	(the	strike	price)	on	or	before	a	specific	date	(the
expiration	date).	The	two	main	types	of	options	are	call	options	(which	give	the	right	to	buy)	and	put	options	(which	give	the	right	to	sell).	Pricing	options	is	tricky	because	their	value	depends	on	several	factors,	including	the	price	of	the	underlying	asset,	volatility,	time	to	expiration,	and	interest	rates.	Over	the	years,	various	models	have	been
developed	to	tackle	this	problem,	with	the	Black-Scholes	Model	and	the	Binomial	Model	being	the	most	prominent.	The	Binomial	Model,	developed	by	Cox,	Ross,	and	Rubinstein	in	1979,	is	a	discrete-time	model	for	pricing	options.	Unlike	the	Black-Scholes	Model,	which	assumes	continuous	time,	the	Binomial	Model	breaks	down	the	time	to	expiration
into	a	series	of	discrete	intervals	or	steps.	At	each	step,	the	price	of	the	underlying	asset	can	move	up	or	down	by	a	specific	factor,	creating	a	binomial	tree	of	possible	price	paths.	The	beauty	of	the	Binomial	Model	lies	in	its	simplicity	and	flexibility.	It	can	handle	a	wide	range	of	scenarios,	including	American	options	(which	can	be	exercised	at	any
time	before	expiration)	and	options	on	assets	that	pay	dividends.	Before	diving	into	the	mechanics	of	the	model,	its	important	to	understand	its	underlying	assumptions:	Discrete	Time	Intervals:	The	model	divides	the	time	to	expiration	into	a	finite	number	of	intervals.	Two	Possible	Movements:	At	each	step,	the	price	of	the	underlying	asset	can	either
move	up	or	down	by	a	fixed	factor.	No	Arbitrage:	The	model	assumes	that	there	are	no	arbitrage	opportunities,	meaning	its	impossible	to	make	a	risk-free	profit.	Risk-Neutral	Valuation:	The	model	operates	under	the	assumption	that	investors	are	risk-neutral,	meaning	they	are	indifferent	to	risk	when	pricing	options.	Lets	start	by	constructing	a
simple	binomial	tree.	Suppose	we	have	a	stock	currently	priced	at	S_0.	Over	a	small	time	interval	\Delta	t,	the	stock	price	can	either	move	up	to	S_0	\times	u	or	down	to	S_0	\times	d,	where	u	and	d	are	the	up	and	down	factors,	respectively.	The	up	and	down	factors	are	calculated	using	the	following	formulas:	u	=	e^{\sigma	\sqrt{\Delta	t}}	d	=	e^{-
\sigma	\sqrt{\Delta	t}}	Here,	\sigma	is	the	volatility	of	the	underlying	asset,	and	\Delta	t	is	the	length	of	each	time	step.	Lets	say	we	have	a	stock	priced	at	$100,	with	a	volatility	of	20%	and	a	time	step	of	1	year.	Using	the	formulas	above,	we	can	calculate	the	up	and	down	factors:	u	=	e^{0.2	\times	\sqrt{1}}	=	e^{0.2}	\approx	1.2214	d	=	e^{-0.2
\times	\sqrt{1}}	=	e^{-0.2}	\approx	0.8187	So,	after	one	year,	the	stock	price	can	either	move	up	to:	S_u	=	100	\times	1.2214	=	122.14	or	down	to:	S_d	=	100	\times	0.8187	=	81.87	This	creates	a	simple	one-step	binomial	tree:	S_u	=	122.14	/	S_0	=	100	\	S_d	=	81.87	Now	that	weve	built	the	binomial	tree,	lets	use	it	to	price	a	European	call	option.	A
European	call	option	gives	the	holder	the	right	to	buy	the	underlying	asset	at	the	strike	price	K	at	expiration.	The	value	of	the	option	at	expiration	is	straightforward:	C_u	=	\max(S_u	-	K,	0)	C_d	=	\max(S_d	-	K,	0)	To	find	the	options	value	at	the	present	time,	we	need	to	work	backward	through	the	tree	using	the	concept	of	risk-neutral	probability.
Under	the	risk-neutral	valuation	framework,	the	expected	return	of	the	underlying	asset	is	the	risk-free	rate	r.	The	risk-neutral	probability	p	of	an	up	movement	is	given	by:	p	=	\frac{e^{r	\Delta	t}	-	d}{u	-	d}	Using	this	probability,	we	can	calculate	the	present	value	of	the	option	as	the	discounted	expected	payoff:	C_0	=	e^{-r	\Delta	t}	(p	C_u	+	(1	-
p)	C_d)	Lets	continue	with	our	previous	example.	Suppose	the	strike	price	K	is	$100,	the	risk-free	rate	r	is	5%,	and	the	time	to	expiration	is	1	year.	First,	calculate	the	risk-neutral	probability:	p	=	\frac{e^{0.05	\times	1}	-	0.8187}{1.2214	-	0.8187}	\approx	\frac{1.0513	-	0.8187}{0.4027}	\approx	0.576	Next,	calculate	the	options	payoff	at	expiration:
C_u	=	\max(122.14	-	100,	0)	=	22.14	C_d	=	\max(81.87	-	100,	0)	=	0	Finally,	calculate	the	present	value	of	the	option:	C_0	=	e^{-0.05	\times	1}	(0.576	\times	22.14	+	(1	-	0.576)	\times	0)	\approx	0.9512	\times	12.76	\approx	12.14	So,	the	fair	value	of	the	European	call	option	is	approximately	$12.14.	While	the	one-step	binomial	tree	is	useful	for
illustration,	real-world	applications	often	require	multiple	steps	to	capture	the	complexity	of	price	movements.	The	process	remains	the	same,	but	the	tree	grows	exponentially	with	each	additional	step.	Lets	extend	our	previous	example	to	a	two-step	binomial	tree.	Each	step	is	6	months	(\Delta	t	=	0.5	years),	and	the	total	time	to	expiration	is	1	year.
First,	calculate	the	up	and	down	factors:	u	=	e^{0.2	\times	\sqrt{0.5}}	\approx	1.1519	d	=	e^{-0.2	\times	\sqrt{0.5}}	\approx	0.8681	Next,	build	the	binomial	tree:	S_uu	=	100	\times	1.1519	\times	1.1519	\approx	132.69	/	S_u	=	100	\times	1.1519	\approx	115.19	/	\	S_0	=	100	S_ud	=	100	\times	1.1519	\times	0.8681	\approx	100	\	/	S_d	=	100	\times
0.8681	\approx	86.81	\	S_dd	=	100	\times	0.8681	\times	0.8681	\approx	75.36	Now,	calculate	the	options	payoff	at	expiration:	C_{uu}	=	\max(132.69	-	100,	0)	=	32.69	C_{ud}	=	\max(100	-	100,	0)	=	0	C_{dd}	=	\max(75.36	-	100,	0)	=	0	Next,	calculate	the	risk-neutral	probability	for	each	step:	p	=	\frac{e^{0.05	\times	0.5}	-	0.8681}{1.1519	-	0.8681}
\approx	\frac{1.0253	-	0.8681}{0.2838}	\approx	0.554	Finally,	work	backward	through	the	tree	to	find	the	options	present	value:	C_u	=	e^{-0.05	\times	0.5}	(0.554	\times	32.69	+	(1	-	0.554)	\times	0)	\approx	0.9753	\times	18.11	\approx	17.66	C_d	=	e^{-0.05	\times	0.5}	(0.554	\times	0	+	(1	-	0.554)	\times	0)	=	0	C_0	=	e^{-0.05	\times	0.5}	(0.554
\times	17.66	+	(1	-	0.554)	\times	0)	\approx	0.9753	\times	9.78	\approx	9.54	So,	the	fair	value	of	the	European	call	option	in	this	two-step	model	is	approximately	$9.54.	Flexibility:	The	Binomial	Model	can	handle	a	wide	range	of	scenarios,	including	American	options	and	options	on	dividend-paying	stocks.	Intuitive:	The	step-by-step	approach	makes	it
easier	to	understand	and	visualize.	Discrete	Time:	Its	particularly	useful	when	dealing	with	assets	that	have	discrete	price	movements	or	when	continuous-time	models	are	impractical.Computational	Complexity:	As	the	number	of	steps	increases,	the	size	of	the	binomial	tree	grows	exponentially,	making	calculations	more	cumbersome.	Approximation:
The	model	is	an	approximation	of	reality,	and	its	accuracy	depends	on	the	number	of	steps	used.	Assumptions:	Like	all	models,	the	Binomial	Model	relies	on	assumptions	that	may	not	hold	in	real-world	markets.	The	Black-Scholes	Model	is	another	widely	used	option	pricing	model.	While	both	models	aim	to	achieve	the	same	goal,	they	differ	in	their
approach	and	assumptions.	FeatureBinomial	ModelBlack-Scholes	ModelTimeDiscreteContinuousFlexibilityHandles	American	and	exotic	optionsPrimarily	for	European	optionsComplexityEasier	to	understandMore	mathematically	complexComputational	LoadIncreases	with	more	stepsLess	computationally	intensive	In	practice,	the	Binomial	Model	is
often	used	as	a	stepping	stone	to	understanding	the	Black-Scholes	Model.	While	the	Black-Scholes	Model	is	more	elegant	and	computationally	efficient,	the	Binomial	Models	flexibility	makes	it	a	valuable	tool	in	many	situations.	The	Binomial	Model	is	widely	used	in	finance	for	pricing	options,	risk	management,	and	strategic	decision-making.	Here	are
a	few	examples:	Pricing	American	Options:	Since	American	options	can	be	exercised	at	any	time	before	expiration,	the	Binomial	Models	discrete-time	approach	is	particularly	useful.	Dividend-Paying	Stocks:	The	model	can	easily	incorporate	dividends,	making	it	suitable	for	pricing	options	on	dividend-paying	stocks.	Employee	Stock	Options:
Companies	often	use	the	Binomial	Model	to	value	employee	stock	options,	which	typically	have	unique	features	like	vesting	periods.	The	Binomial	Model	is	a	powerful	and	intuitive	tool	for	pricing	options.	While	it	has	its	limitations,	its	flexibility	and	simplicity	make	it	a	cornerstone	of	option	pricing	theory.	By	breaking	down	the	time	to	expiration	into
discrete	steps,	the	model	allows	us	to	capture	the	complexity	of	price	movements	and	calculate	the	fair	value	of	options	with	precision.	BLMKE,	Andreas.	How	to	invest	in	structured	products:	a	guide	for	investors	and	investment	advisors.	Chichester:	Wiley,	2009.	xvi,	374.	ISBN	9780470746790.Learning	Outcomes:Identify	the	key	characteristics	and
benefits	of	structured	products	as	investment	vehicles.Describe	the	role	and	impact	of	the	European	Structured	Investment	Products	Association	(EUSIPA)	in	the	structured	products	market.Differentiate	between	various	types	of	structured	products,	including	investment	certificates	and	barrier	options.Evaluate	the	mechanisms	and	behavior	of
capital	protection	and	participation	investment	products	through	theoretical	and	case	study	approaches.	Structured	products	enjoy	significant	popularity	across	European	states,	primarily	due	to	their	capacity	to	balance	risk	and	reward.	These	financial	instruments	offer	several	compelling	advantages:Capital	Protection	and	Market	Participation:
Investors	are	drawn	to	structured	products	because	they	provide	a	mechanism	to	protect	all	or	part	of	the	invested	capital	while	still	allowing	participation	in	the	gains	of	the	capital	markets.Accessibility	to	Regional	Markets:	These	products	facilitate	access	to	regional	markets	and	asset	classes	that	may	otherwise	be	inaccessible	through	direct
investments.Diverse	Return	Profiles:	Structured	products	can	be	designed	with	a	wide	array	of	return	profiles,	adapting	to	various	investor	needs	and	market	conditions.	They	remain	effective	across	different	market	movementsproviding	potential	returns	in	rising,	sideways,	or	falling	markets.Liquidity:	Market	makers	enhance	the	liquidity	of
structured	products	by	continuously	buying	and	selling	them,	which	ensures	a	stable	market	presence	and	availability.Sophisticated	Investment	Strategies:	Investors	can	implement	complex	investment	strategies	typically	available	to	advanced	traders	through	the	acquisition	of	a	single	structured	product.Regulatory	Oversight	and	Transparency:
These	products	are	often	listed	on	official,	regulated	markets,	adding	a	layer	of	security	and	transparency	for	investors.Tax	Advantages:	In	some	jurisdictions,	structured	products	offer	favorable	tax	conditions,	enhancing	their	attractiveness	as	investment	options.Official	Website:	EUSIPAMarket	Insights:	EUSIPA	Market	ReportsFounded	in	2009,
EUSIPA	represents	a	collective	of	national	issuer	associations	from	multiple	European	countries	including	Austria,	France,	Germany,	Italy,	Sweden,	Belgium,	the	UK,	Switzerland,	and	The	Netherlands.	As	an	international	non-profit	association	governed	under	Belgian	law,	EUSIPA	also	maintains	a	presence	in	the	EU	transparency	register.EUSIPA
aims	to	foster	transparency	and	establish	uniform	market	standards	across	Europe.	It	serves	as	a	pivotal	platform	for	its	members	to	engage	in	meaningful	dialogue	with	European	policymakers,	ensuring	that	the	voices	of	issuers	are	heard	in	the	regulatory	landscape.Definition	by	Andreas	BlmkeStructured	products	are	financial	assets,	which	consist
of	various	elemental	components,	combined	to	generate	a	specific	risk-return	profile	(not	replicable	with	stocks	and	bonds)	adapted	to	an	investors	needs.Structured	products,	often	referred	to	as	investment	certificates,	are	essentially	securitized	derivatives.	These	are	complex	financial	contracts	encapsulated	within	a	single	security	that	trades	on
exchanges	similar	to	stocks.	These	instruments	are	crafted	and	issued	by	financial	institutions	and	are	utilized	by	both	retail	and	institutional	investors.	They	can	be	traded	on	stock	exchanges	or	dealt	directly	between	parties	in	over-the-counter	(OTC)	transactions.	Structured	products	carry	inherent	credit	risks	as	they	are	issued	in	the	form	of
bearer	bonds.	This	means	the	issuers	entire	assets	back	the	liability	on	these	products.	The	quality	and	safety	of	structured	products	are	intrinsically	linked	to	the	creditworthiness	of	the	issuer.	Like	traditional	bonds,	these	products	are	exposed	to	issuer	risk,	which	implies	that	in	the	event	of	issuer	bankruptcy,	both	bonds	and	structured	products	are
treated	as	part	of	the	bankruptcy	estate.To	mitigate	such	risks,	investors	are	advised	to:Opt	for	products	issued	by	financially	robust	institutions.Diversify	their	investments	across	various	issuers.Continuously	monitor	the	financial	health	of	the	issuers	over	time.	Structured	products	do	not	follow	a	universal	standard	for	categorization.	However,
common	classifications	are	often	derived	from	industry	associations	such	as:EUSIPA:	European	Structured	Investment	Products	Association	provides	a	framework	for	categorizing	structured	products	within	Europe.View	the	EUSIPA	Derivatives	Map	for	details.SVSP:	Swiss	Structured	Products	Association	offers	an	alternative	categorization
scheme.Explore	the	SVSP	Derivative	Map	for	comparison.Classical	structured	products	representation	Structured	products	attract	both	private	and	institutional	investors	when	traditional	investment	avenues	do	not	meet	their	specific	needs.	These	needs	might	include	the	desire	for	returns	higher	than	the	risk-free	rate	while	still	benefiting	from
capital	protection.	Structured	products	are	particularly	appealing	in	scenarios	where	conventional	investments	either	do	not	provide	sufficient	returns	or	fail	to	address	specific	financial	goals	and	risk	profiles.	Sellers	of	structured	products,	typically	financial	institutions,	are	driven	by	profit.	They	utilize	sophisticated	mathematical	models	to
determine	a	fair	value	of	the	product	at	issuance.	This	fair	value	is	then	increased	by	a	spread	which	covers	various	costs	associated	with	the	product	over	its	lifetime.	These	costs	include	but	are	not	limited	to:Secondary	market	activitiesListing	feesProduction	of	term-sheetsSettlement	processesAmong	these,	the	most	significant	cost	factor	is
hedging.	Hedging	expenses	are	challenging	to	predict	in	advance	as	they	depend	on	market	dynamics	over	the	products	life.	The	profit	from	structured	products,	however,	is	only	realized	at	their	expiry,	and	having	a	large	and	diverse	portfolio	helps	in	more	effectively	hedging	as	some	products	can	offset	the	risks	of	others.	Structured	products	can
be	accessed	and	traded	through	various	platforms,	which	serve	as	marketplaces	for	these	financial	instruments:Deutsche	Bank	X-markets:	Offers	a	wide	range	of	structured	products	for	different	investment	strategies.Website:	Deutsche	Bank	X-marketsBrse	Stuttgart:	Known	for	its	user-friendly	approach	to	trading	structured	products	among	other
securities.Brse	Frankfurt:	One	of	Europes	largest	trading	centers	for	securities,	including	derivatives	and	structured	products.	For	further	research	and	detailed	insights	into	the	market	for	structured	products,	the	following	resources	are	invaluable:European	Structured	Investment	Products	Association	(EUSIPA):	WebsiteGerman	Derivatives
Association:	WebsiteSwiss	Structured	Products	Association	(SSPA):	WebsiteUK	Structured	Products	Association:	WebsiteItalian	Association	of	Certificates	and	Investment	Products	(ACEPI):	Website	Barrier	options	are	exotic	call	or	put	options	that	include	a	barrier	condition	placed	above	or	below	the	strike	that,	when	crossed,	either	transfroms	the
exotic	option	into	a	plain	vanilla	option	(in	barriers)	or	cancels	it	altogether	(out	barriers).Barrier	options	are	integrated	into	various	structured	financial	products	such	as	barrier	reverse	convertibles	and	bonus	certificates.	Recognized	for	their	complexity,	these	options	introduce	a	conditional	component	to	the	standard	option	mechanism,	making	the
final	payoff	uncertain	until	the	options	maturity.	Barrier	options	can	be	classified	into	four	main	types	based	on	the	direction	of	the	barrier	and	its	effect:Up	&	Out:	The	option	becomes	void	if	the	underlying	assets	price	goes	above	the	barrier.Up	&	In:	The	option	comes	into	existence	when	the	underlying	assets	price	goes	above	the	barrier.Down	&
Out:	The	option	becomes	void	if	the	underlying	assets	price	falls	below	the	barrier.Down	&	In:	The	option	comes	into	existence	when	the	underlying	assets	price	falls	below	the	barrier.Additionally,	these	options	can	feature	a	rebate,	a	predefined	amount	paid	to	the	option	holder	if	the	barrier	is	breached	before	maturity.	Barrier	options	are	generally
more	cost-effective	than	their	plain	vanilla	counterparts	due	to	the	added	condition	of	the	barrier.	The	pricing	dynamics	vary	significantly	between	in	and	out	options:For	In	Options:	As	the	maturity	increases,	the	price	approaches	that	of	a	plain	vanilla	option,	especially	as	the	price	of	the	underlying	asset	approaches	the	barrier.For	Out	Options:
Longer	maturities	reduce	the	price,	potentially	approaching	zero	as	the	assets	price	nears	the	barrier.	Structured	products	typically	incorporate	barrier	options	with	specific	monitoring	styles:American-style	Barriers:	These	allow	the	barrier	condition	to	be	triggered	at	any	point	during	the	options	life,	including	intraday	events,	and	are	known	for
continuous	monitoring.European-style	Barriers:	These	restrict	the	barrier	condition	to	only	be	checked	at	the	maturity	of	the	option.Although	most	structured	products	utilize	American-style	barriers	due	to	cost-effectiveness,	the	investor	focus	generally	lies	elsewhere	rather	than	on	the	barrier	type	itself.ExampleAmerican	Barrier	(Original)European
BarrierShark	NoteBarrier	131.5%,	Rebate	7.5%Barrier	123%,	Rebate	7.5%Barrier	Reverse	ConvertibleCoupon	10.4%,	Barrier	75%Coupon	8.6%,	Barrier	75%Bonus	CertificateBonus	9%,	Barrier	65%Bonus	2.5%,	Barrier	65%Window-style	Barriers:	Situated	between	American	and	European	styles,	window	barrier	options	are	designed	to	activate	or
deactivate	only	during	specific	periods	within	the	products	life.	For	example,	the	barrier	in	some	reverse	convertibles	might	only	be	relevant	during	the	final	three	months	of	a	one-year	term.	Although	not	common,	window	barriers	provide	an	opportunity	for	investors	to	avoid	premature	knockouts,	with	the	value	difference	between	American	and
window	options	typically	being	minimal.	Capital	guaranteed	products	ensure	the	redemption	of	the	initial	capital	invested	at	maturity,	while	also	allowing	participation	to	varying	degrees	in	the	performance	of	an	underlying	risky	asset.These	products	are	distinguished	by	three	primary	features:Limited	Loss	Potential:	The	potential	loss	is	confined	to
the	level	of	the	capital	guarantee,	not	accounting	for	the	issuers	credit	risk.Participation	in	Underlying	Assets:	Investors	gain	exposure	to	the	performance	of	selected	assets.Minimal	Guaranteed	Income:	Typically,	these	products	offer	low	or	no	guaranteed	income,	focusing	instead	on	capital	preservation	and	growth	through	asset	performance.Its
crucial	to	consider	the	opportunity	costs,	such	as	foregone	dividends	or	the	risk-free	rate.	While	attractive	at	first	glance,	the	actual	benefit	depends	significantly	on	the	performance	of	the	underlying	asset	at	maturity:If	the	asset	performs	well,	the	capital	guarantee	becomes	redundant.If	the	asset	performs	poorly,	it	might	have	been	better	not	to
invest.Capital	guaranteed	products	serve	as	a	prudent	option	for	investors	who	prefer	not	to	remain	in	cash	but	are	also	uncertain	about	future	market	directions.Classical	construction	of	capital	guaranteed	products	involves:Issuing	a	zero-coupon	bond	matching	the	maturity	of	the	product	to	ensure	capital	return.Purchasing	a	call	option	on	the
underlying	risky	asset	to	allow	for	profit	participation.	If	we	consider	an	interest	rate	of	4%	with	a	5-year	maturity:	\[\text{Zero-bond	Price}	=	\frac{100\%}{(1+4\%)^5}	=	82.19\%\]The	available	funds	to	purchase	options	(the	discount)	is:	\[\text{Discount}	=	100\%	-	82.19\%	=	17.81\%\]Participation	rate	is	calculated	as:	\[\text{Participation}	=
\frac{\text{Discount}}{\text{Option	cost}}\]	Two	critical	factors	affect	the	desirability	and	effectiveness	of	capital	guaranteed	products:Interest	Rates:	Higher	rates	increase	the	discount,	thereby	enhancing	the	capacity	to	purchase	options.Volatility	of	the	Underlying:	Lower	volatility	reduces	option	costs,	improving	participation	rates.Options	for
enhancing	attractiveness	include	reducing	the	capital	guarantee	below	100%,	adding	caps	or	exotic	features	like	knock-out	barriers,	and	utilizing	out-of-the-money	options.	Exchangeable	CertificatesMarket	Expectations:	Rising	volatility,	sharply	rising	or	falling	underlying.Minimum	redemption	at	maturity	equals	the	capital	protection	(e.g.,	100%	of
nominal).Value	may	fall	below	capital	protection	during	the	products	life.Unlimited	upside	above	the	strike	price,	with	possible	coupon	payments.Capped	Capital	ProtectionMarket	Expectations:	Rising	underlying,	potential	for	sharp	falls.Guaranteed	minimum	redemption	at	expiry.Participation	in	positive	performance	up	to	a	specified	cap.Limited
profit	potential	due	to	the	cap.Shark	Note	-	Knock-OutShark	Note	ConstructionMarket	Expectations:	Rising	underlying,	unlikely	to	breach	a	set	barrier.Full	capital	protection	with	a	short-	to	medium-term	horizon.Uses	an	up-and-out	call	option;	if	the	barrier	is	touched,	a	rebate	may	be	paid.Participation	in	performance	until	a	barrier	is	hit;	if
breached,	participation	ends	and	a	rebate	might	be	paid.Redemption	Scenarios:If	the	underlying	is	below	100%	of	its	initial	value	at	maturity:	100%	capital	guarantee.If	above	100%	without	touching	the	barrier:	100%	+	participation.If	the	barrier	is	touched:	100%	+	rebate.Strategic	Use:Set	a	high	barrier	to	minimize	knock-out	risk	or	a	high	rebate
to	enhance	returns	if	knock-out	occurs.Autocall	feature	allows	early	redemption	if	the	barrier	is	breached,	suitable	for	reinvestment	without	waiting	for	product	maturity.Capital	Protection	with	CouponMarket	Expectations:	Rising	underlying,	potential	sharp	falls.Guaranteed	capital	protection	at	maturity.Periodic	coupon	payments	linked	to	the
performance	of	the	underlying.Limited	upside	potential.Match	the	product	with	your	investment	horizon;	the	capital	guarantee	is	effective	only	at	maturity.Avoid	products	with	lower	capital	guarantee	than	90%	(e.g.,	90%	guarantee	means	that	underlying	must	perform	by	more	than	10%	to	be	break	even,	not	considering	any	opportunity	cost).Ensure
the	participation	rate	is	at	least	80%.Verify	the	issuers	credit	rating.Prefer	shorter	maturity	periods	for	products	like	Shark	Notes	to	reduce	risk	(no	more	than	two	or	three	years).CharacteristicDetailsUnderlying	Risky	AssetEurostoxx50	IndexMaturity4	yearsImplied	Volatility23%Assets	Dividend	Yield	(p.a.)4%Interest	Rate	Level	(4-year	swap	rate,
p.a.)4.5%Capital	Guarantee	Level100%Initial	Participation100%Key	Variables:Interest	Rate:	A	primary	determinant	of	the	price	of	the	zero-coupon	bond	component	of	the	product.Volatility:	Crucial	for	the	valuation	of	the	call	option	embedded	in	the	product.	High	volatility	increases	the	potential	upside,	impacting	the	options	price	more	significantly
when	the	asset	is	at-the-money.Spot	price	variations	for	classical	capital	guaranteed	productsThis	graph	demonstrates	the	relationship	between	the	spot	price	of	the	underlying	asset	and	the	price	of	the	capital	guaranteed	product.	The	slope	of	the	line,	particularly	when	it	approaches	a	45-degree	angle,	indicates	a	delta	of	100%,	where	the	products
price	moves	one-to-one	with	the	underlying	asset.Price	as	a	function	of	maturityThe	slope	of	this	graph	illustrates	how	the	delta	of	the	product	changes	with	time.	Typically,	the	products	participation	at	inception	ranges	from	40%-60%	of	its	maturity	level,	reflecting	the	initial	risk	profile	and	pricing.Note:	Capital	guarantee	is	contingent	on	purchasing
the	product	at	par	and	is	valid	only	at	maturity,	not	before.	The	guarantee	level	remains	constant	throughout	the	products	life.Implied	Volatility	Fluctuations:An	increase	in	implied	volatility	(e.g.,	from	23%	to	33%)	can	enhance	the	value	of	the	call	option	component,	as	shown	in	the	corresponding	graph.A	decrease	(e.g.,	from	23%	to	13%)	typically
lowers	the	call	options	value	due	to	reduced	potential	for	high	returns.Implied	volatility	increase	(from	23%	to	33%)Implied	volatility	decrease	(from	23%	to	13%)Volatility	is	more	influential	when	the	product	is	at-the-money	and	can	mitigate	some	losses	through	increased	option	premiums	during	downturns	in	the	assets	price.Interest	Rate
Impact:Rising	interest	rates	lead	to	lower	prices	for	the	zero-coupon	bond	component,	influencing	the	overall	valuation	negatively,	especially	if	the	underlying	assets	price	falls	simultaneously.Conversely,	falling	interest	rates	increase	the	bonds	value,	cushioning	any	adverse	effects	from	a	drop	in	the	underlying	assets	price.Interest	rate	increase
(from	4.5%	to	6.5%)Interest	rate	decrease	(from	4.5%	to	2.5%)Shifts	in	implied	volatility	influence	the	capital	guaranteed	product	most	when	at-the-money.An	increase	in	volatility	tends	to	increase	the	value	of	the	product.A	positive	shift	in	interest	rates	lowers	the	value	of	the	product	most	when	the	embedded	call	is	out-of-the-money.When	the	call	is
deep	in-the-money,	an	interest	rate	shift	has	less	impact.Everything	else	held	equal,	the	passing	of	time	(without	movement	on	the	spot)	is	positive	for	the	value	of	the	product	over	time,	since	the	time	value	lost	on	the	call	is	more	than	offset	by	the	gain	in	the	zero	bond	value.	Participation	products	are	investment	vehicles	that	link	returns	directly	to
the	performance	of	their	underlying	assets,	sometimes	featuring	conditional	downside	protection	or	a	leveraged	upside.Key	Characteristics:Risk	Profile:	Generally	higher	risk	compared	to	capital	protection	and	yield	enhancement	products	due	to	the	absence	of	capital	guarantees.Underlying	Assets:	Typically	stocks	or	stock	indices,	but	can	also
include	commodities,	real	estate,	and	more	exotic	assets.Liquidity	and	Efficiency:	Often	very	liquid,	these	products	compete	directly	with	ETFs	in	providing	exposure	to	specific	markets,	themes,	or	regions.Function:	Mirrors	the	performance	of	one	or	more	underlying	assets.	Commonly	tracks	excess	returns	(excluding	dividends/yields).Structure:
Comprised	of	a	zero-strike	call	option,	which	values	the	asset	minus	any	discounted	dividends	or	yields.Advantages:Access	to	Difficult	Markets:	Allows	investment	in	markets	or	assets	that	are	otherwise	inaccessible	via	traditional	instruments,	such	as	private	equity	or	certain	commodities.Tax	Efficiency:	May	offer	favorable	tax	treatments	compared
to	direct	investments	in	the	underlying	assets.Function:	Combines	the	features	of	a	tracker	certificate	with	conditional	downside	protection.Structure:	Includes	a	zero-strike	call	option	and	a	long	down-and-out	put	option.Key	Parameters:Participation	Level:	Degree	to	which	the	investor	gains	from	positive	performance	of	the	underlying.Bonus	Level:
Additional	return	offered	if	the	underlying	performs	above	a	certain	threshold	without	breaching	a	downside	barrier.Barrier	Level:	The	price	level	below	which	the	downside	protection	is	activated.Maturity:	Typically	short,	recommended	no	longer	than	two	to	three	years.Function:	Provides	positive	participation	in	both	the	upside	and	downside
movements	of	the	underlying	asset.Structure:	Consists	of	a	long	zero-strike	call	and	double	down-and-out	put	options.Function:	Designed	for	aggressive	investment	strategies,	providing	enhanced	returns	if	the	underlying	outperforms	expected	dividends.Structure:	Combines	a	zero-strike	call	with	multiple	long	at-the-money	calls,	funded	by
dividends.Volatility	and	Dividends:	Optimal	conditions	include	low	volatility	(for	cheaper	options)	and	high	dividend	yields.Function:	Provides	leveraged	exposure	to	the	underlying	asset	up	to	a	capped	level.Structure:	A	zero-strike	call	combined	with	a	long	at-the-money	call	and	two	short	calls	at	higher	strikes.Scenario	Planning:	Best	utilized	in	a
moderately	bullish	scenario	with	falling	volatility.Timing	and	Maturity:	Critical	due	to	the	short	duration	of	the	product,	typically	3-9	months.	Participation	products	such	as	bonus,	turbo,	airbag,	and	outperformance	certificates	are	heavily	influenced	by	factors	like	implied	volatility,	dividend	yields,	and	interest	rates.	These	factors	shape	the	products
performance	and	its	strategic	suitability	for	different	market	conditions.Factor	(Increase)Impact	on	Products	PriceEffect	LevelSpot	PricePositiveMaximumImplied	VolatilityVariableHighImplied	CorrelationPositiveMedium-LowInterest	RatesNegativeLowDividendsNegativeMediumInitial	Sensitivity:	At	issuance,	the	delta	of	a	bonus	certificate	is
approximately	1,	meaning	its	price	moves	almost	one-for-one	with	the	underlying	asset.	However,	this	sensitivity	decreases	if	the	spot	price	approaches	the	barrier.Price	Stability:	Bonus	certificates	tend	to	underperform	during	market	downturns	due	to	the	drop	in	market	value,	despite	their	protective	features.Price	as	a	function	of	maturityMaturity:
Shorter	maturities	are	preferable	to	reduce	exposure	to	prolonged	market	volatility.Barrier	Level:	The	barrier	should	be	set	considering	the	worst-case	market	scenario	to	ensure	effective	downside	protection.Leverage	and	Sensitivity:	As	the	spot	price	nears	the	barrier,	the	certificates	delta	becomes	highly	volatile,	which	can	lead	to	significant	price
swings.Initial	Conditions:	High	implied	volatility	at	issuance	allows	for	better	pricing	of	protective	options.Post-Issuance	Volatility:	A	decrease	in	implied	volatility	post-issuance	generally	benefits	the	mark-to-market	value	of	the	certificate.Increase	in	implied	volatility	(from	23%	to	33%)Decrease	in	implied	volatility	(from	23%	to	13%)What	is	the	value
of	the	capital	guarantee	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	120,	the	strike	price	of	the	certificate	is	100,	level	of	guarantee	100%,	and	participation	80%?What	is	the	value	of	the	capital	guarantee	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	90,	the	strike	price	of	the	certificate	is	100,	level	of
guarantee	100%,	and	participation	80%?What	is	the	value	of	the	capital	guarantee	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	63,	the	strike	price	of	the	certificate	is	40,	the	cap	is	50,	level	of	guarantee	100%,	and	participation	130%?What	is	the	value	of	the	capital	guarantee	certificate	with	knock-out	at	maturity	if	the	value	of
the	underlying	asset	ends	at	50,	the	strike	price	of	the	certificate	is	55,	the	knock-out	barrier	is	67,	level	of	guarantee	100%,	and	participation	110%?	The	highest	value	of	the	underlying	asset	during	maturity	was	70.What	is	the	value	of	the	capital	guarantee	certificate	with	knock-out	at	maturity	if	the	value	of	the	underlying	asset	ends	at	63,	the
strike	price	of	the	certificate	is	55,	the	knock-out	barrier	is	67,	level	of	guarantee	100%,	and	participation	110%?	The	highest	value	of	the	underlying	asset	during	maturity	was	65.What	is	the	value	of	the	outperformance	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	56,	the	strike	price	of	the	certificate	is	40,	and	the	participation	is
170%?What	is	the	value	of	the	outperformance	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	77,	the	strike	price	of	the	certificate	is	40,	the	cap	is	70,	and	the	participation	is	130%?What	is	the	value	of	the	bonus	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	35,	the	strike	price	of	the	certificate	is	40,	the	knock-
out	barrier	is	30?	The	lowest	value	of	the	underlying	asset	during	maturity	was	35.What	is	the	value	of	the	bonus	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	35,	the	strike	price	of	the	certificate	is	40,	the	knock-out	barrier	is	30?	The	lowest	value	of	the	underlying	asset	during	maturity	was	25.What	is	the	value	of	the	twin-win
certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	44,	the	strike	price	of	the	certificate	is	50,	the	knock-out	barrier	is	40?	The	lowest	value	of	the	underlying	asset	during	maturity	was	35.What	is	the	value	of	the	twin-win	certificate	at	maturity	if	the	value	of	the	underlying	asset	ends	at	44,	the	strike	price	of	the	certificate	is	50,	the
knock-out	barrier	is	40?	The	lowest	value	of	the	underlying	asset	during	maturity	was	41.	By	remaining	on	this	website	or	using	its	content,	you	confirm	that	you	have	read	and	agree	with	the	Terms	of	Use	Agreement.	We	are	not	liable	for	any	damages	resulting	from	using	this	website.	Any	information	may	be	inaccurate	or	incomplete.	See	full
Limitation	of	Liability.	Content	may	include	affiliate	links,	which	means	we	may	earn	commission	if	you	buy	on	the	linked	website.	See	full	Affiliate	and	Referral	Disclosure.	We	use	cookies	and	similar	technology	to	improve	user	experience	and	analyze	traffic.	See	full	Cookie	Policy.	See	also	Privacy	Policy	on	how	we	collect	and	handle	user	data.
Numerical	method	for	the	valuation	of	financial	optionsIn	finance,	the	binomial	options	pricing	model	(BOPM)	provides	a	generalizable	numerical	method	for	the	valuation	of	options.	Essentially,	the	model	uses	a	"discrete-time"	(lattice	based)	model	of	the	varying	price	over	time	of	the	underlying	financial	instrument,	addressing	cases	where	the
closed-form	BlackScholes	formula	is	wanting,	which	in	general	does	not	exist	for	the	BOPM.[1]The	binomial	model	was	first	proposed	by	William	Sharpe	in	the	1978	edition	of	Investments	(ISBN013504605X),[2]	and	formalized	by	Cox,	Ross	and	Rubinstein	in	1979[3]	and	by	Rendleman	and	Bartter	in	that	same	year.[4]For	binomial	trees	as	applied	to
fixed	income	and	interest	rate	derivatives	see	Lattice	model	(finance)	Interest	rate	derivatives.The	Binomial	options	pricing	model	approach	has	been	widely	used	since	it	is	able	to	handle	a	variety	of	conditions	for	which	other	models	cannot	easily	be	applied.	This	is	largely	because	the	BOPM	is	based	on	the	description	of	an	underlying	instrument
over	a	period	of	time	rather	than	a	single	point.	As	a	consequence,	it	is	used	to	value	American	options	that	are	exercisable	at	any	time	in	a	given	interval	as	well	as	Bermudan	options	that	are	exercisable	at	specific	instances	of	time.	Being	relatively	simple,	the	model	is	readily	implementable	in	computer	software	(including	a	spreadsheet).Although
higher	in	computational	complexity	and	computationally	slower	than	the	BlackScholes	formula,	it	is	more	accurate,	particularly	for	longer-dated	options	on	securities	with	dividend	payments.	For	these	reasons,	various	versions	of	the	binomial	model	are	widely	used	by	practitioners	in	the	options	markets.[citation	needed]For	options	with	several
sources	of	uncertainty	(e.g.,	real	options)	and	for	options	with	complicated	features	(e.g.,	Asian	options),	binomial	methods	are	less	practical	due	to	several	difficulties,	and	Monte	Carlo	option	models	are	commonly	used	instead.	When	simulating	a	small	number	of	time	steps	Monte	Carlo	simulation	will	be	more	computationally	time-consuming	than
BOPM	(cf.	Monte	Carlo	methods	in	finance).	However,	the	worst-case	runtime	of	BOPM	will	be	O(2n),	where	n	is	the	number	of	time	steps	in	the	simulation.	Monte	Carlo	simulations	will	generally	have	a	polynomial	time	complexity,	and	will	be	faster	for	large	numbers	of	simulation	steps.	Monte	Carlo	simulations	are	also	less	susceptible	to	sampling
errors,	since	binomial	techniques	use	discrete	time	units.	This	becomes	more	true	the	smaller	the	discrete	units	become.Binomial	Lattice	with	CRR	formulaefunction	americanPut(T,	S,	K,	r,	sigma,	q,	n)	{	'	T...	expiration	time	'	S...	stock	price	'	K...	strike	price	'	r...	interest	rate	'	sigma...	volatility	of	the	stock	price	'	q...	dividend	yield	'	n...	height	of	the
binomial	tree	deltaT:=	T	/	n;	up:=	exp(sigma	*	sqrt(deltaT));	p0:=	(up	*	exp(-q	*	deltaT)	-	exp(-r	*	deltaT))	/	(up^2	-	1);	p1:=	exp(-r	*	deltaT)	-	p0;	'	initial	values	at	time	T	for	i:=	0	to	n	{	p[i]:=	K	-	S	*	up^(2*i	-	n+1);	if	p[i]	<	0	then	p[i]:=	0;	}	'	move	to	earlier	times	for	j:=	n-1	down	to	0	{	for	i:=	0	to	j	{	'	binomial	value	p[i]:=	p0	*	p[i+1]	+	p1	*	p[i];	'
exercise	value	exercise:=	K	-	S	*	up^(2*i	-	j+1);	if	p[i]	<	exercise	then	p[i]:=	exercise;	}	}	return	americanPut:=	p[0];}The	binomial	pricing	model	traces	the	evolution	of	the	option's	key	underlying	variables	in	discrete-time.	This	is	done	by	means	of	a	binomial	lattice	(Tree),	for	a	number	of	time	steps	between	the	valuation	and	expiration	dates.	Each
node	in	the	lattice	represents	a	possible	price	of	the	underlying	at	a	given	point	in	time.Valuation	is	performed	iteratively,	starting	at	each	of	the	final	nodes	(those	that	may	be	reached	at	the	time	of	expiration),	and	then	working	backwards	through	the	tree	towards	the	first	node	(valuation	date).	The	value	computed	at	each	stage	is	the	value	of	the
option	at	that	point	in	time.Option	valuation	using	this	method	is,	as	described,	a	three-step	process:Price	tree	generation,Calculation	of	option	value	at	each	final	node,Sequential	calculation	of	the	option	value	at	each	preceding	node.The	tree	of	prices	is	produced	by	working	forward	from	valuation	date	to	expiration.At	each	step,	it	is	assumed	that
the	underlying	instrument	will	move	up	or	down	by	a	specific	factor	(	u	{\displaystyle	u}	or	d	{\displaystyle	d}	)	per	step	of	the	tree	(where,	by	definition,	u	1	{\displaystyle	u\geq	1}	and	0	<	d	1	{\displaystyle	0\epsilon	}	\Delta	L_t,	\quad	\mu	(\theta	)	=r+b(\epsilon	)-\theta	-q-\frac{\sigma	^2}{2}onumber	\\	b(\epsilon	)=	&	\int	_{-\epsilon	}^\epsilon	xu
(x)dx	=	\epsilon	^2	\int	_0^1	x\{	u	(\epsilon	x)	-	u	(-\epsilon	x)	\}dx\;.	\end{aligned}$$	(A.2)	To	correctly	define	\(b(\epsilon	)\),	we	make	the	following	assumption:	Assumption	A.1	We	assume	that	the	integral	(A.2)	takes	a	finite	value.	This	assumption	always	holds	for	compound	Poisson	processes.	Moreover,	Muroi	and	Suda	(2023)	show	that	it	also
holds	for	the	CGMY	and	NIG	models.	[2]	We	approximate	the	small	noise	component,	\(\{M_t=\sigma	B_t	+	(	L_t^{\epsilon	}	-	b(\epsilon	)t	)	\}\).	We	introduce	a	sequence	of	independent	and	identically	distributed	random	variables	\(\{\xi	_{i}	\}_{i=1}^N\)	representing	the	small	noise	component	as$$\begin{aligned}	{\mathbb	Q}\left[	\xi	_{i}	\Delta
x=-\Delta	x	\right]	=p_{-1},	\	{\mathbb	Q}\left[	\xi	_{i}	\Delta	x=0	\right]	=p_{0},\	{\mathbb	Q}	\left[	\xi	_{i}	\Delta	x=\Delta	x	\right]	=p_{1}\;.	\end{aligned}$$We	fit	the	first-	and	second-order	moments	to	the	random	variable	\(M_{t+\Delta	t}-M_t\).	Then,	we	have$$p_{\pm	1}=\frac{1}{2}	\left(	\frac{\sigma	^2+\sigma	^2(\epsilon	)}{\eta	^2}
\right),\quad	p_{0}=1-p_{-1}-p_{1}=1-\left(	\frac{\sigma	^2+\sigma	^2(\epsilon	)}{\eta	^2}	\right)	\;,$$where	\(\sigma	^2(\epsilon	)\)	is	given	by$$\sigma	^2(\epsilon	):=	\int	_{-\epsilon	}^\epsilon	x^2u	(x)dx	-	b(\epsilon	)^2	=	\epsilon	^3	\int	_0^1	x^2\{	u	(\epsilon	x)	+	u	(-\epsilon	x)	\}dx	-	b(\epsilon	)^2\;.$$We	must	appropriately	choose	the
parameter	\(\eta\)	in	\(\Delta	x=\eta	\sqrt{\Delta	t}\),	such	that	\(\{p_{-1},p_0,p_1\}\)	are	probabilities:	\(0	\le	p_{j}	\le	1,\	(j=0,\pm	1)\).	[3]	We	approximate	a	large	jump	part,	\(N_t\),	driven	by	the	compound	Poisson	process.	We	introduce	new	variables	\(s_j\	(j=\pm	2,\pm	3,\cdots	)\)	defined	as$$s_j	=	\int	_{(j-1/2)\Delta	x}^{(j+1/2)\Delta	x}u	(x)dx	=
\int	_{-1}^1	u	((j+s/2)\Delta	x)ds	\frac{\Delta	x}{2}.$$The	intensity	of	the	compound	Poisson	process	\(N_t\)	is	given	by	\(\lambda	=\sum	_{j=\pm	2,	\pm	3,	\cdots	}	s_j\).	We	introduce	a	sequence	of	independent	and	identically	distributed	random	variables	\(\{\eta	_{i}	\}_{i=1}^N\)	representing	the	large	jump	component.	The	probability	distribution
is	given	by	\({\mathbb	Q}\left[	\eta	_{i}	\Delta	x	=\Delta	x	\right]	=	q_{j}	\	(j=0,	\pm	2,	\pm	3,	\cdots	)\;,\)	where	\(\{q_{j}\}_j\)	are	given	by$$\begin{aligned}	q_{j}=	&	(1-e^{-\lambda	\Delta	t})	s_j	/	\lambda,\quad	(j=\pm	2,\pm	3,\cdots	)	\\	q_{0}=	&	1	-	\sum	_{j=\pm	2,\pm	3,\cdots	}q_{j}	=	e^{-\lambda	\Delta	t}\;.	\end{aligned}$$The	probability	of	a
jump	occurring	during	a	short	period	\(\Delta	t\)	is	given	by	\((1-e^{-\lambda	\Delta	t})\).	[4]	Considering	that	the	constant	\(\theta\)	satisfies	the	condition	\({\mathbb	E}\left[	e^{L_t}	\right]	=e^{\theta	t}\),	we	have	\({\mathbb	E}\left[	e^{L_t+\sigma	B_t}	\right]	={\mathbb	E}	\left[	e^{L_t}	\right]	{\mathbb	E}	\left[	e^{\sigma	B_t}	\right]
=e^{(\theta	+\frac{\sigma	^2}{2})	t}\)	using	the	independence	of	the	two	stochastic	processes	\(\{	L_t	\}\)	and	\(\{B_t	\}\).	We	obtain	the	following	equation:$$\theta	+\frac{\sigma	^2}{2}	=	\frac{1}{\Delta	t}	\log	{\mathbb	E}	\left[	e^{\sigma	\Delta	B_t+\Delta	L_t}	\right]	\approx	b(\epsilon	)	+	\frac{1}{\Delta	t}\log	\left(	\sum	_{j=0,\pm
1}e^{j\Delta	x}{p}_{j}\right)	+	\frac{1}{\Delta	t}\log	\left(	\sum	_{j=0,\pm	2,\pm	3,\cdots	}e^{j\Delta	x}q_{j}	\right)	\;.$$We	can	numerically	calculate	\(\theta\)	using	this	equation.	[5]	We	compute	the	following	characteristic	function	for	\(Z=\xi	_i+\eta	_i\):$$\phi	(\omega	):=	\left(	p_0+	\sum	_{m=-L,	m	e	-1,0,1}^{M}	e^{i	\omega	m}p_m	\right)
^N	\left(	e^{-i	\omega	}q_{-1}+q_0+e^{i	\omega	}q_1	\right)	^N\;.$$[6]	Given	that	the	drift	term	is	not	included	in	the	lattice,	we	must	modify	the	discrete	cosine	coefficients	for	the	call	and	put	options	at	the	maturity	date	given	in	Eq.2.6	as$$\begin{aligned}	V_k^{J-1}=	\left\{	\begin{array}{l}	S	e^{\mu	(\theta	)T}	\chi	_k(\tilde{\rho	}+1,b)-K	\psi
_k(\tilde{\rho	}+1,b),	\	(call)\\	K	\psi	_k(a,\tilde{\rho	})-S	e^{\mu	(\theta	)T}	\chi	_k(a,\tilde{\rho	}),	\	(put),	\end{array}	\right.	\end{aligned}$$where	\(\tilde{\rho	}\)	is	given	as	\(\tilde{\rho	}=	\left\lfloor	\frac{\log	(K/Se^{\mu	(\theta	)T})}{\sigma	\sqrt{\Delta	t}}	\right\rfloor\).	We	also	need	to	change	the	payoff	function	at	time	\(jN\Delta	t	\
(j=0,1,\cdots,J)\)	to	\(g_{\ell	}^j=G(Se^{\mu	(\theta	)jN\Delta	t}e^{\ell	\Delta	x})\).	As	discussed	in	the	main	text,	we	can	now	calculate	the	American	option	price	using	a	discrete	cosine	transform.B	Appendix-B:Accuracy	of	the	DCT	Method	for	Pricing	American	OptionsIn	this	section,	we	estimate	the	numerical	accuracy	of	the	DCT	method	proposed
in	the	previous	section.	In	this	article,	we	construct	an	approximation	tree	based	on	the	Markov	chain,	which	has	two	different	sources	of	approximation	error.	The	first	is	because	of	the	constraint	imposed	on	the	range	of	the	payoff	function	in	our	algorithm,	while	the	second	is	due	to	the	characteristic	function.	Although	the	range	of	the	tree	is
constrained,	this	constraint	is	not	included	in	the	calculation	of	the	characteristic	function.	With	this	in	mind,	we	proceed	to	estimate	the	numerical	error	between	the	results	obtained	by	our	proposed	methods	and	those	derived	from	the	original	tree.	We	fix	the	integer	N	at	\(N=1\)	to	evaluate	the	price	of	American	options	with	expiration	date	\(T=J
\Delta	t\).	We	denote	the	price	of	the	underlying	asset	at	time	\(j	\Delta	t\)	by	\(S_{j	\Delta	t}\).	We	assume	that	the	discrete-time	stochastic	process	\(\{	S_{j	\Delta	t}	\}_j\)	evolves	on	the	tree.	The	transition	probability	is	\(p_{k,\ell	}={\mathbb	P}\left[	S_{(j+1)	\Delta	t}=s_{\ell	}|S_{j	\Delta	t}=s_k	\right]\),	as	described	in	the	previous	section.	We	also
introduce	a	new	probability,	\(p^m_{k,\ell	}\),	as	\(p^m_{k,\ell	}={\mathbb	P}\left[	S_{(j+m)	\Delta	t}=s_{\ell	}|S_{j	\Delta	t}=s_k	\right]\).	Remark	B.1	For	the	sequence	\(\{	{\alpha	}_n	\}_{n=a}^{b}\),	we	define	another	sequence,	\(\{	\tilde{\alpha	}_n	\}_{n=-\infty	}^{\infty	}\),	which	is	defined	as	\({\tilde{\alpha	}}_n={\alpha	}_{\ell	}\),	if	an
integer	\(n(=2M	k	+r)\)	satisfies	\(r=\ell\)	or	\(r=2b+1-\ell\)	using	\(a	\le	\ell	\le	b\).	The	American	option	price	in	the	binomial	tree	model	at	time	\(j	\Delta	t\)	is	represented	by	\(v^j_{\ell	}\)	when	the	underlying	price	is	\(s_{\ell	}=Se^{\ell	\sqrt{\Delta	t}}\).	This	is	computed	using	the	DCT	approach.	The	numerical	result	is	denoted	by	\(w^j_{\ell	}\).	In
this	section,	we	estimate	the	numerical	error,	\(\epsilon	=v_{0}^{0}-w_{0}^{0}\).	We	fix	an	integer	\(\ell	\in	[a,b]\)	and	estimate	the	error	in	the	price	of	options	without	early	exercise,$$\eta	_{\ell	}^{J-1}=c_{\ell	}^{J-1}-d_{\ell	}^{J-1}:=\zeta	_1^{\ell	}(J-1)+\zeta	_2^{\ell	}(J-1)\;,$$where	\(\{c_{\ell	}^{J-1}\}_{\ell	=a}^b\)	is	the	price	of	options
without	early	exercise.	Furthermore,	\(\{d_{\ell	}^{J-1}\}_{\ell	=a}^b\)	is	the	numerical	price	of	Bermudan	options	without	early	exercise	computed	using	the	DCT	method.	The	first	term,	\(\zeta	_1^{\ell	}(J-1)\),	is	the	error	caused	by	ignoring	the	outside	of	the	payoff	for	the	interval	[a,b].	This	term	arises	from	the	first	approximation	of	Eq.2.4.	The
second	term,	\(\zeta	_2^{\ell	}(J-1)\),	is	an	error	caused	by	using	the	outside	of	[a,b]	in	calculating	the	characteristic	function.	This	term	results	from	the	second	approximation	of	Eq.2.4.	These	quantities	are	expressed	as	follows:$$\begin{aligned}	\zeta	_1^{\ell	}(J-1)=e^{-r	\Delta	t}\left(	\sum	_{j<	a	\	or	\	b


