
	

https://deginaraveku.tugoduzak.com/693219550233818358631938829099262086453023?lozibugiputoxatavarelupusarobajuvodedow=fuforimajuzazodokevitanesowerimudonoxasopunefadefebozoligunesalujevuvesomizuzoxosuxirizidodubonalowaxixuvuregewopudulisedusaripomofolomavevudaketodizewurojawavekilodedatupasegebukosujurukaxelefuxewogobo&utm_kwd=simple+to+do+list+using+react+js&jiromamejibareruzofunifokevakaju=zixininijedudodojavufenoguginonirapozotuzepulutoriwajululuxumifutojepemurubuxipizilesoxosimurazejivonawetajek




























Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,
and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or
technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for
your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Unlock	the	full	potential	of	React	and	take	your	coding	skills	to	the	next	level	with	this	tutorial!	We'll	build	a	practical	and	functional	todo	list	app	that	showcases	the	incredible	capabilities	of	this	popular	JavaScript	library.	You'll
learn	how	to	create	your	own	dynamic	and	interactive	UI	elements,	making	your	app	more	user-friendly	and	efficient.	Goals:Define	the	TodoList	Component:	We'll	kick	off	by	creating	a	functional	component	that	defines	the	TodoList	component.Manage	State	with	useState	Hook:	Next,	we'll	leverage	the	power	of	the	useState	hook	to	manage	the	state
in	our	TodoList	component.Design	the	User	Interface	with	JSX:	To	create	an	engaging	and	stylish	user	interface,	we'll	use	JSX	to	define	the	UI	for	our	TodoList	component.Handle	Events:	We'll	implement	event	handling	to	add	and	delete	todo	items,	including	form	submissions	and	button	clicks.Conditional	Rendering:	Lastly,	we'll	use	conditional
rendering	to	only	display	the	delete	button	for	a	todo	item	if	it	exists,	making	our	app	more	user-friendly	and	efficient.	Ready	to	take	your	React	skills	to	the	next	level	and	build	a	functional	and	stylish	todo	list	app?	Let's	get	started!	Setup	Let's	kick	off	our	React	project	by	opening	up	your	terminal	or	command	prompt.	Navigate	to	the	directory
where	you	want	to	create	your	new	project.	Once	you're	in	the	desired	directory,	enter	the	following	command:	npx	create-react-app	todo-app	Once	the	project	is	created,	navigate	to	the	project	directory	using	the	following	command:	Next,	install	React	and	ReactDOM:	npm	install	react	react-dom	They	are	both	essential	for	creating	a	React	app.
React	allows	you	to	create	reusable	UI	components,	while	ReactDOM	is	responsible	for	rendering	those	components	into	the	browser.	Now	you	can	start	the	development	server	by	running	the	following	command:	Create	a	Todo	list	componentfunction	TodoList	()	{	return	(	Add	Todo	);}export	default	TodoList;	Result	Adding	the	rest	of	react	features
Add	import	statement	that	brings	in	the	React	library	and	the	useState	hook	from	the	react	package	at	the	top	most	part	of	your	component.import	React,	{	useState	}	from	'react';	Add	useState	hook	to	create	two	pieces	of	state:	todos	and	inputValue.	todos	is	an	array	that	will	hold	the	list	of	todos,	and	inputValue	is	a	string	that	will	hold	the	value	of
the	input	field.	const	[todos,	setTodos]	=	useState([]);const	[inputValue,	setInputValue]	=	useState('');	Adding	Todo	Listimport	React	from	'react'import	{	useState	}	from	'react'function	TodoList	()	{	const	[todos,	setTodos]	=	useState([])	const	[inputValue,	setInputValue]	=	useState('')function	handleChange(e){	setInputValue(e.target.value)}function
handleSubmit(e){	e.preventDefault()	setTodos([...todos,	inputValue])	setInputValue('')}	return	(	Todo	List	Add	Todo	{todos.map((todo)	=>	(	{todo}	Delete	))}	)}export	default	TodoList	Result	Let's	break	down	the	above	codes	This	is	the	JSX	that	will	be	rendered	to	the	screen.	It	consists	of	a	form	with	an	input	field	and	a	button	for	adding	todos,	an
unordered	list	of	todos	with	a	delete	button	for	each,	and	a	heading.	Todo	List	Add	Todo	{todos.map((todo)	=>	(	{todo}	Delete	))}	Inside	the	form,	the	value	of	the	input	field	is	set	to	the	inputValue	state	and	the	onChange	event	is	set	to	the	handleChange	function,	which	updates	the	inputValue	state	every	time	the	input	field	changes.	Add	Todo
Inside	the	ul,	the	map	method	is	used	to	render	each	todo	as	an	li	element	with	a	key	set	to	the	index	of	the	todo.	Each	li	element	also	contains	a	delete	button.	{todos.map((todo)	=>	(	{todo}	Delete	))}	This	is	a	function	that	sets	the	inputValue	state	to	the	value	of	the	input	field.	It's	called	every	time	the	input	field	changes.	const	handleChange	=	(e)
=>	{	setInputValue(e.target.value);};	This	is	a	function	that	adds	a	new	todo	to	the	todos	state	and	clears	the	inputValue	state	when	the	form	is	submitted.	It's	called	when	the	form	is	submitted.	const	handleSubmit	=	(e)	=>	{	e.preventDefault();	setTodos([...todos,	inputValue]);	setInputValue('');};	Deleteing	Todo	List	This	is	a	function	that	deletes	a
todo	from	the	todos	state.	It	creates	a	copy	of	the	todos	array	using	the	spread	operator,	removes	the	todo	at	the	specified	index	using	the	splice	method,	and	sets	the	todos	state	to	the	new	array.const	handleDelete	=	(index)	=>	{	const	newTodos	=	[...todos];	newTodos.splice(index,	1);	setTodos(newTodos);};//	{todos.map((todo,	index)	=>	(	{todo}
handleDelete(index)}>Delete	))}	Result	This	is	our	final	codes	put	togetherimport	React	from	'react'import	{	useState	}	from	'react'function	TodoList	()	{	const	[todos,	setTodos]	=	useState([])	const	[inputValue,	setInputValue]	=	useState('')function	handleChange(e){	setInputValue(e.target.value)}function	handleSubmit(e){	e.preventDefault()
setTodos([...todos,	inputValue])	setInputValue('')}function	handleDelete(index){	const	newTodos	=	[...todos]	newTodos.splice(index,	1)	setTodos(newTodos)}	return	(	Todo	List	Add	Todo	{todos.map((todo,	index)	=>	(	{todo}	handleDelete(index)}>Delete	))}	)}export	default	TodoList;	Embarking	on	your	journey	to	create	a	ToDo	List	application	can
be	exhilarating	without	the	right	ReactJS	tutorial	guiding	you	through.	React,	known	for	its	efficiency	in	building	dynamic	user	interfaces,	offers	tools	like	state	management	and	event	handling	that	are	pivotal	when	dealing	with	tasks	such	as	utilizing	forms,	making	API	calls	with	AJAX,	or	maintaining	application	state.	This	article	promises	a	hands-on
approach	to	understanding	these	React	concepts,	handling	AJAX	for	dynamic	content	retrieval,	manipulating	state	for	task	management,	and	more.	Navigate	through	the	creation	of	your	app	from	setting	up	your	React	project	to	styling	it,	ensuring	a	rich	learning	experience	teeming	with	practical	code	examples	to	bolster	your	development	skills.
Build	your	ToDo	List	Application	in	5	Easy	Steps:1)	Setting	Up	Your	React	Project2)	Building	the	App	Component3)	Creating	the	TodoList	Component4)	Implementing	the	TodoItem	ComponentThe	code	for	all	of	these	steps	that	we've	discussed	above	will	look	like	this	in	your	app.jsx	file:5)	Styling	Your	Todo	AppAll	your	CSS	styling	will	be	in	a
separate	file,	here	in	the	app.css	file,	and	will	look	like	this:The	output	after	running	our	files	together	will	look	like	this:Takeaways...FAQsCan	I	use	React	and	Firebase	together?Is	Google	Firebase	free?What	is	the	purpose	of	Firebase?	Ive	divided	this	entire	project	into	5	simple	steps	for	you	to	follow	along	with	leaving	space	for	you	to	add	your	own
touch	and	make	it	yours,	lets	get	started.	Download	and	Install	Node.js:	First,	visit	the	official	Node.js	website	to	download	the	installer.	Choose	the	LTS	(Long	Term	Support)	version	for	stability	and	extended	support.	Install	npm:	Node.js	installation	includes	npm	(Node	Package	Manager),	with	essential	for	managing	JavaScript	packages.Install
Create	React	App:	Open	your	terminal	and	runnpm	install	-g	create-react-appto	install	this	utility	globally.	Generate	Your	Project:	Executenpx	create-react-app	my-appto	create	a	new	directory	named	my-app	with	all	the	necessary	setups.	Also	Read:	How	to	Install	React.js	on	Windows:	A	Complete	Guide	Explore	Initial	Setup:	Navigate	to	your	project
directory	and	observe	the	default	structure	provided	by	Create	React	App.	Key	folders	include	public	for	static	assets,	src	for	source	files,	and	node_modules	for	dependencies.	Key	Files:	The	src	folder	contains	App.js,	the	root	component,	and	index.js,	which	renders	the	App	component	into	the	DOM.Launch	the	Server:	In	your	project	directory,
runnpm	startto	fire	up	the	development	server.	This	command	compiles	the	app	and	opens	it	in	your	default	web	browser.	Automatic	Refresh:	Any	changes	you	make	in	the	source	files	will	automatically	refresh	the	app	in	the	browser,	thanks	to	the	hot	reloading	feature.	This	setup	process	leverages	the	Create	React	App	toolchain,	which	simplifies	the
configuration	and	initial	file	structure,	allowing	you	to	focus	on	building	your	React	application.	Before	diving	into	the	next	section,	ensure	youre	solid	on	full-stack	development	essentials	like	front-end	frameworks,	back-end	technologies,	and	database	management.	If	you	are	looking	for	a	detailed	Full	Stack	Development	career	program,	you	can	join
GUVIs	Full	Stack	Development	Course	with	Placement	Assistance.	You	will	be	able	to	master	the	MERN	stack	(MongoDB,	Express.js,	React,	Node.js)	and	build	real-life	projects.	Additionally,	if	you	want	to	explore	ReactJS	through	a	self-paced	course,	try	GUVIs	ReactJS	certification	course.	Initialize	the	Component:	Start	by	creating	a	new	file	in	your
projectssrc/componentsdirectory.	Name	itApp.js.	This	file	will	house	your	main	App	component,	which	serves	as	the	entry	point	for	your	ToDo	List	application.	Define	the	App	Component:	Within	App.js,	define	your	App	component	as	a	functional	component.	Use	the	following	basic	structure	to	get	started.React	and	ReactDOM:	At	the	top	of
yourApp.jsfile,	ensure	you	import	React.	This	import	is	crucial	as	it	allows	you	to	use	JSX	and	other	React	features.Additional	Components:	If	your	application	will	use	other	custom	components	or	third-party	libraries,	import	them	at	the	beginning	of	the	file.	For	instance,	if	you	are	using	Material-UI	components,	you	might	add.CSS	Files:	To	style	your
component,	import	the	necessary	CSS	files	at	the	top	of	your	component	file.Create	Root	Element:	In	your	projectssrc/index.js,	set	up	the	root	for	your	React	application	by	importingReactDOMand	pointing	it	to	the	appropriate	DOM	element:Display	the	App	Component:	TheReactDOM.createRoot()method	links	your	React	application	to	an	existing
DOM	element	(typically	a	div	with	the	id	of	root	in	yourpublic/index.htmlfile).	Theroot.render()method	then	renders	your	App	component	within	this	root	element,	displaying	your	initial	UI	on	the	page.	By	following	these	steps,	youve	successfully	set	up	and	rendered	your	primary	App	component,	forming	the	foundation	of	your	ToDo	List	application.
This	setup	allows	for	further	expansion	and	integration	of	additional	features	and	components	as	you	develop	your	application.	Must	Read:	Stopwatch	Using	ReactJS:	4	Easy	Steps	to	Create	Your	First	React	Application	To	manage	the	list	of	tasks	within	your	TodoList	component,	utilize	theuseStatehook	from	React.	Start	by	initializing	the	state	with	an
empty	array	or	a	default	set	of	tasks.	This	state	will	hold	all	the	tasks	you	add,	each	represented	by	an	object	with	properties	such	as	id,	text,	and	completed	status.	For	adding	new	tasks,	handle	user	input	with	a	controlled	component	approach.	Include	an	input	field	in	your	components	return	statement	and	bind	it	to	thetextstate	withonChangeto
capture	user	input	dynamically.	To	add	tasks	to	your	list,	create	anaddTaskfunction	that	constructs	a	new	task	object	and	updates	the	state.	Bind	this	function	to	a	buttonsonClickevent	within	your	component	to	trigger	task	addition.	Use	themapfunction	to	iterate	over	the	tasks	array	and	display	each	task.	Each	task	is	rendered	as	a	list	item	within	an
unordered	list,	with	buttons	to	mark	it	as	complete	or	to	delete	it.	ImplementtoggleCompletedanddeleteTaskfunctions	to	handle	these	actions,	updating	the	tasks	array	accordingly.	By	following	these	steps,	youll	have	a	functional	TodoList	component	that	allows	users	to	add,	display,	complete,	and	delete	tasks	dynamically.	Also	Read:	Currency
Converter	App	Using	ReactJS:	A	Step-by-Step	Guide	Initialize	the	Component:	Begin	by	creating	a	file	namedTodoItem.jsin	yoursrc/componentsdirectory.	This	component	represents	each	task	in	your	ToDo	list.Props	Overview:TodoItemreceivestask,deleteTask,	andtoggleCompletedas	props.	These	functions	are	crucial	for	manipulating	the	tasks	state
from	the	parent	component.	Functionality:task:	Contains	details	of	a	specific	task.	deleteTask:	Function	to	remove	a	task	from	the	list.	toggleCompleted:	Function	to	toggle	the	completion	status	of	a	task.	import	React,	{	useState	}	from	'react';import	'./App.css';function	App()	{	const	[tasks,	setTasks]	=	useState([]);	const	[input,	setInput]	=
useState('');	const	addTask	=	()	=>	{	if	(input.trim())	{	setTasks([...tasks,	{	text:	input,	completed:	false	}]);	setInput('');	}	};	const	toggleTask	=	(index)	=>	{	const	newTasks	=	tasks.map((task,	i)	=>	i	===	index	?	{	...task,	completed:	!task.completed	}	:	task	);	setTasks(newTasks);	};	const	deleteTask	=	(index)	=>	{	const	newTasks	=	tasks.filter((_,
i)	=>	i	!==	index);	setTasks(newTasks);	};	return	(	To-Do	List	setInput(e.target.value)}	placeholder="Add	a	new	task"	/>	Add	{tasks.map((task,	index)	=>	(	toggleTask(index)}>{task.text}	deleteTask(index)}>Delete	))}	);}export	default	App;	Find	Out	6	Essential	Prerequisites	For	Learning	ReactJS	Inline	Styling:	Begin	by	applying	styles	directly	to
your	components	using	thestyleattribute.	Remember,	in	React,	inline	styles	are	not	strings	but	objects	with	camelCased	properties	as	keys.External	CSS	Styling:	For	more	general	styling,	create	a	CSS	file	and	import	it	into	your	component(as	mentioned	before).	This	method	is	excellent	for	reusable	styles	across	multiple	components.CSS	Modules:
Utilize	CSS	Modules	for	component-specific	styles	without	worrying	about	global	namespace	pollution.SASS/SCSS:	Leverage	the	power	of	SASS	for	complex	styling	scenarios,	like	nested	selectors	and	variables,	by	creating	a.scssfile	and	importing	it	similarly	to	a	regular	CSS	file.	Know	More	About	Types	of	CSS:	A	Comprehensive	Guide	to	Styling
Web	Pages	Styled	Components:	Install	thestyled-componentslibrary	and	use	it	to	encapsulate	styles	within	your	components.	This	method	couples	the	styles	directly	with	the	component	logic,	enhancing	modularity	and	reusability.Dynamic	Styling:	Use	props	to	dynamically	alter	styles	based	on	component	state	or	props.	Styled	Components	make	this
particularly	intuitive.Global	Styles:	Define	global	styles	withcreateGlobalStylefrom	styled-components	to	maintain	consistency	across	your	application.Theming:	Implement	theming	within	your	app	to	allow	for	style	variations	across	different	components	using	the	same	theme	provider.Media	Queries:	Use	media	queries	within	styled-components	to
create	responsive	designs	that	adapt	to	various	device	sizes.Animations	and	Transitions:	Add	visual	flair	to	your	components	with	CSS	animations	and	transitions	to	enhance	user	experience.	By	integrating	these	styling	techniques,	your	ToDo	app	will	function	well	and	look	modern	and	appealing.	Must	Explore:	10	Best	React	Project	Ideas	for
Developers	[with	Source	Code]	.app	{	font-family:	Arial,	sans-serif;	text-align:	center;	background-color:	#f4f4f9;	padding:	20px;	max-width:	500px;	margin:	50px	auto;	border-radius:	10px;	box-shadow:	0	0	10px	rgba(0,	0,	0,	0.1);}.header	{	margin-bottom:	20px;}.input-container	{	display:	flex;	justify-content:	center;	margin-bottom:	20px;}.input-
container	input	{	width:	70%;	padding:	10px;	font-size:	16px;	border:	1px	solid	#ddd;	border-radius:	5px;	outline:	none;}.input-container	button	{	padding:	10px	15px;	font-size:	16px;	margin-left:	10px;	border:	none;	border-radius:	5px;	background-color:	#28a745;	color:	white;	cursor:	pointer;}.input-container	button:hover	{	background-color:
#218838;}.task-list	{	list-style:	none;	padding:	0;}.task	{	background-color:	white;	padding:	15px;	margin-bottom:	10px;	border-radius:	5px;	display:	flex;	justify-content:	space-between;	align-items:	center;	box-shadow:	0	0	5px	rgba(0,	0,	0,	0.1);	cursor:	pointer;}.task.completed	{	text-decoration:	line-through;	color:	#888;}.task	button	{	background-
color:	#dc3545;	border:	none;	color:	white;	padding:	5px	10px;	border-radius:	5px;	cursor:	pointer;}.task	button:hover	{	background-color:	#c82333;}	As	you	can	see	above,	you	can	add	whatever	tasks	you	would	like	to	in	the	Add	a	new	task	box	and	then	click	on	Add.	You	can	add	as	many	tasks	as	you	want	and	also	delete	them	using	the	Delete
button	as	shown	in	the	image	below.	Cool	right?	How	we	can	just	make	stuff	like	this!	Kickstart	your	Full	Stack	Development	journey	by	enrolling	in	GUVIs	Full	Stack	Development	Course	with	Placement	Assistance	where	you	will	master	the	MERN	stack	(MongoDB,	Express.js,	React,	Node.js)	and	build	interesting	real-life	projects.	This	program	is
crafted	by	our	team	of	experts	to	help	you	upskill	and	assist	you	in	placements.	Alternatively,	if	you	want	to	explore	ReactJS	through	a	self-paced	course,	try	GUVIs	ReactJS	certification	course.	Through	the	guidance	offered	in	this	article,	readers	now	possess	the	foundational	knowledge	required	to	embark	on	creating	a	dynamic	ToDo	List	application
using	ReactJS.	We	covered	essential	phases	from	setting	up	the	React	project,	crafting	the	App	and	TodoList	components,	to	meticulously	styling	the	application	for	an	appealing	user	interface.	The	significance	of	this	tutorial	extends	beyond	just	the	creation	of	a	ToDo	list;	it	lays	down	the	groundwork	for	understanding	Reacts	core	functionalities	such
as	component	creation,	state	management,	and	the	use	of	hooks.	This	not	only	aids	in	building	more	complex	applications	but	also	in	appreciating	Reacts	efficient	rendering	and	state	management	capabilities.	As	readers	continue	to	refine	their	skills,	exploring	further	into	areas	like	context	API	or	Redux	for	state	management	on	a	larger	scale	could
be	the	next	step.	Also	Explore:	6	Compelling	Reasons	to	choose	ReactJS	over	AngularJS	Yes,	React	and	Firebase	can	be	used	together.	React	provides	the	front-end	framework,	while	Firebase	offers	backend	services	like	authentication,	real-time	database,	and	hosting,	making	it	easier	to	build	full-featured	web	applications.	Google	Firebase	offers	a
free	tier	called	the	Spark	Plan,	which	includes	limited	usage	of	core	features	such	as	authentication,	Firestore	database,	and	hosting.	For	more	extensive	usage,	you	can	upgrade	to	a	paid	plan.	Firebase	is	a	platform	developed	by	Google	for	building	mobile	and	web	applications.	It	provides	a	variety	of	tools	and	services,	including	real-time	databases,
authentication,	analytics,	cloud	storage,	and	serverless	functions,	to	help	developers	build,	manage,	and	grow	their	apps	efficiently.	If	you're	new	to	React.js	and	you're	eager	to	dive	into	application	development,	then	you've	come	to	the	right	place!Join	me	in	this	tutorial	as	I	walk	you	through	building	a	basic	TODO	app	from	the	ground	up.	A	TODO
app	serves	as	an	ideal	project	for	beginners	to	grasp	the	fundamentals	of	a	new	programming	language	or	framework	quickly.	It	provides	a	practical	context	for	learning	essential	concepts	while	working	towards	a	tangible	outcome.If	you're	embarking	on	your	React.js	journey,	building	a	TODO	app	along	with	this	tutorial	could	be	the	perfect	starting
point.	Before	we	begin,	ensure	you	have	basic	knowledge	of	React.js	and	have	Node.js	and	npm	installed	on	your	computer.	If	you	haven't	already,	take	a	moment	to	set	up	your	development	environment.	Our	goal	is	to	create	a	simple	TODO	app	with	features.	Here's	what	we'll	be	aiming	for:Adding	New	TODOs:	Enable	users	to	add	new	tasks	to	the
list.Editing	and	Deleting	TODOs:	Provide	functionality	to	modify	or	remove	existing	tasks.Marking	TODOs	as	Completed:	Allow	users	to	indicate	when	tasks	are	finished.Tracking	Completed	TODOs:	Implement	a	feature	to	keep	track	of	all	completed	tasks.Feel	free	to	expand	upon	this	list	with	additional	features	if	you	like.	For	the	purpose	of	this
tutorial,	we'll	focus	on	these	core	functionalities.This	is	an	example	of	the	TODO	app	we	are	going	to	be	building:A	preview	of	our	todo	appTable	of	Contents:	In	2024,	using	a	framework	like	Next.js	or	Remix	is	a	recommended	approach	for	initiating	a	React	project.	Either	framework	will	suffice	so	just	choose	the	one	you're	most	comfortable	with.	For
this	tutorial,	we'll	be	using	Next.js.To	create	a	React	app	with	Next.js,	navigate	to	your	preferred	directory	and	run	the	following	command:npx	create-next-app@latestNote:	We	won't	be	using	TypeScript	and	TailwindCSS	for	this	project,	so	you	can	proceed	with	the	default	settings.Once	the	installation	is	complete,	navigate	into	your	newly	created
app	directory	(I've	named	mine	'todo')	and	start	the	development	server	by	running:cd	todonpm	run	dev	cd	todoyarn	run	devWith	your	development	server	up	and	running,	we're	ready	to	begin	crafting	our	TODO	app!	In	React,	we	build	UIs	out	of	components.	Our	TODO	app's	UI	consists	of	several	parts.	Let's	break	them	down:	The	Header
component	serves	to	display	the	title	of	our	app.	Rather	than	directly	embedding	HTML,	we'll	build	this	functionality	within	a	React	component.Start	by	creating	a	directory	for	our	components:mkdir	src/components	cd	src/componentstouch	Header.jsxComponents	in	React	are	essentially	JavaScript	functions	that	return	HTML.	In	our	Header.jsx	file,
define	a	function	that	returns	the	HTML	content	for	our	Header	component:function	Header()	{	return	(	TODO	);}	export	default	Header;We're	exporting	the	Header	function	so	that	we	can	utilize	it	throughout	our	project.	The	TODO	Hero	Component	plays	a	pivotal	role	in	our	application.	It	serves	as	the	section	where	we	provide	an	overview	of	the
total	number	of	todos	and	the	number	of	completed	tasks.An	image	showing	the	TODOHero	componentUnlike	the	header	component,	which	remains	static	throughout	our	app	usage,	the	TODOHero	component	is	dynamic.	It	continuously	updates	based	on	the	number	of	completed	todos	and	the	total	number	of	todos.When	building	components,	it's
important	to	identify	dynamic	parts	early	on.	In	React,	we	achieve	this	by	passing	arguments,	called	props,	to	our	components.Let's	create	the	TODOHero	component.	First,	make	sure	you're	in	the	src/components	directory:cd	src/componentsNow,	create	a	new	file	for	the	TODOHero	component:touch	TODOHero.jsxIn	TODOHero.jsx,	define	a	function
that	takes	props	as	arguments:function	TODOHero({	todos_completed,	total_todos	})	{	return	(	Task	Done	Keep	it	up	{todos_completed}/{total_todos}	);}export	default	TODOHero;This	function	returns	HTML	content	for	our	TODOHero	component.	We're	using	props	to	dynamically	update	the	number	of	completed	todos	and	the	total	number	of
todos.	Our	Form	component	is	going	to	be	a	simple	input	with	a	submit	button,	so	go	ahead	and	create	a	new	componenttouch	src/components/Form.jsxLike	I	said,	this	is	going	to	be	a	very	simple	form:	just	an	input	with	a	submit	button.	The	label	is	for	accessibility.	function	Form()	{	const	handleSubmit	=	(event)	=>	{	event.preventDefault();
event.target.reset();	};	return	(	Submit	);}export	default	Form;We've	added	an	onSubmit	event	to	the	form	with	a	handleSubmit	event	handler.	The	event.preventDefault()	prevents	the	form	from	submitting	and	reloading	the	entire	app.	Lastly,	we	reset	the	form	with	event.target.reset().	Lastly,	let's	create	the	List	component.	Start	by	creating	a	new
component	file	named	TODOList.jsx:touch	src/components/TODOList.jsxThe	list	itself	is	a	straightforward	ordered	list:	function	TODOList()	{	return	{/*	list	goes	here	*/};}export	default	TODOList;The	list	items	will	be	generated	dynamically	from	the	todo	data.	But	before	we	proceed,	let's	create	a	separate	component	for	the	list	item.In	React,	nearly
everything	is	a	component,	so	we'll	create	the	Item	component	alongside	the	TODOList	component:	function	Item({	item	})	{	return	(	{item?.title}	Edit	Delete	);}The	list	item	itself	is	simply	an	element	with	buttons	for	editing	and	deleting	tasks.	We've	ensured	that	the	itself	is	not	clickable,	following	the	principle	that	"anything	clickable	on	the	web
should	either	be	a	button	or	a	link".Now,	we	can	use	the	Item	component	within	our	list:	function	TODOList({	todos	})	{	return	(	{todos	&&	todos.length	>	0	?	(	todos?.map((item,	index)	=>	)	)	:	(	Seems	lonely	in	here,	what	are	you	up	to?	)}	);}export	default	TODOList;With	these	components	in	place,	our	TODO	app's	UI	is	fully	constructed.	So	far,
we've	created	four	separate	components,	each	of	which	doesn't	do	much	on	its	own.	Now,	we	need	to	render	these	components	in	our	index	page.In	Next.js,	pages	are	located	inside	the	src/app	directory,	and	the	index	page	is	typically	named	page.js.First,	let's	empty	the	contents	of	the	file	as	we	won't	need	anything	inside	it:echo	-n	>
src/app/page.jsNext,	import	all	the	components	we've	created	and	utilize	them	inside	the	page.js	file	as	shown	below:	import	React	from	"react";import	Form	from	"@/components/Form";import	Header	from	"@/components/Header";import	TODOHero	from	"@/components/TODOHero";import	TODOList	from	"@/components/TODOList";function
Home()	{	return	(	);}export	default	Home;By	viewing	the	output	in	your	browser,	it	should	resemble	something	like	this:A	preview	of	our	app	without	CSS	For	styling,	we'll	stick	to	good	old	CSS.	Let's	create	a	styles.css	file	to	hold	our	styles:touch	src/app/styles.cssAlso,	delete	all	the	CSS	files	that	came	with	installing	Next.js	as	we	won't	need
them:rm	src/app/page.module.css	&&	src/app/globals.cssNow,	you	can	add	your	CSS	rules	in	the	styles.css	file.	Though	not	perfect,	the	following	CSS	should	suffice	for	our	simple	example:*,*::after,*::before	{	padding:	0;	margin:	0;	font-family:	inherit;	box-sizing:	border-box;}html,body	{	font-family:	sans-serif;	background-color:	#0d0d0d;	color:	#fff;
display:	flex;	align-items:	center;	justify-content:	center;	width:	100vw;}button	{	cursor:	pointer;}.visually-hidden	{	position:	absolute	;	clip:	rect(1px,	1px,	1px,	1px);	padding:	0	;	border:	0	;	height:	1px	;	width:	1px	;	overflow:	hidden;	white-space:	nowrap;}.text_large	{	font-size:	32px;}.text_small	{	font-size:	24px;}.wrapper	{	display:	flex;	flex-
direction:	column;	width:	70%;}@media	(max-width:	510px)	{	.wrapper	{	width:	100%;	}	header	{	justify-content:	center;	}}header	{	display:	flex;	align-items:	center;	justify-content:	flex-start;	gap:	12px;	padding:	42px;}.todohero_section	{	border:	1px	solid	#c2b39a;	display:	flex;	align-items:	center;	justify-content:	space-around;	align-self:	center;
width:	90%;	max-width:	455px;	padding:	12px;	border-radius:	11px;}.todohero_section	div:last-child	{	background-color:	#88ab33;	width:	150px;	height:	150px;	border-radius:	75px;	font-size:	48px;	display:	flex;	align-items:	center;	justify-content:	center;	text-align:	center;}.form	{	align-self:	center;	width:	97%;	max-width:	455px;	display:	flex;	align-
items:	center;	gap:	12px;	margin-top:	38px;}.form	label	{	width:	90%;}.form	input	{	background-color:	#1f2937;	color:	#fff;	width:	100%;	height:	50px;	outline:	none;	border:	none;	border-radius:	11px;	padding:	12px;}.form	button	{	width:	10%;	height:	50px;	border-radius:	11px;	background-color:	#88ab33;	border:	none;}.todo_list	{	align-self:
center;	width:	97%;	max-width:	455px;	display:	flex;	flex-direction:	column;	align-items:	center;	margin-top:	27px;	margin-bottom:	27px;	gap:	27px;}.todo_item,.edit-form	input	{	display:	flex;	justify-content:	space-between;	align-items:	center;	height:	70px;	width:	100%;	max-width:	455px;	border:	1px	solid	#c2b39a;	font-size:	16px;	background-color:
#0d0d0d;	color:	#fff;	padding:	12px;}.edit-form	input	{	outline:	transparent;	width:	calc(100%	-	14px);	height:	calc(100%	-	12px);	border:	transparent;}.todo_items_left,.todo_items_right	{	display:	flex;	align-items:	center;}.todo_items_left	{	background-color:	transparent;	border:	none;	color:	#fff;	gap:	12px;	font-size:	16px;}.todo_items_right	{	gap:
4px;}.todo_items_right	button	{	background-color:	transparent;	color:	#fff;	border:	none;}.todo_items_right	button	svg	{	fill:	#c2b39a;}Lastly,	we	need	to	import	the	CSS	file	in	our	layout.	Open	the	layout.js	file	located	right	next	to	the	page.js	and	import	the	CSS	file	as	demonstrated	below:An	image	showing	how	to	import	styles.css	file	in	our
componentUpon	previewing	the	app	again,	it	should	now	reflect	the	applied	styles:An	image	showing	the	preview	of	our	app	after	adding	CSS	At	this	stage,	we've	crafted	a	visually	appealing	todo	app,	but	it	lacks	functionality.	Let's	change	that	in	this	section.	Firstly,	we	need	a	method	to	store	our	todo	data.	In	React,	this	is	accomplished	using	statea
JavaScript	object	that	holds	information	about	a	component's	state.React	provides	a	hook	called	useState(),	which	enables	us	to	manage	state	in	our	React	apps.	But	in	Next.js,	before	utilizing	useState,	you	need	to	specify	that	the	component	is	a	client	component.Add	the	following	code	to	the	top	of	your	src/app/page.js	file:"use	client";As	depicted	in
the	image	below:An	image	showing	how	to	add	"use	client"	to	the	top	of	our	page.jsNow,	we	can	use	the	useState	hook	to	create	a	state	for	our	todo	data:	"use	client";import	React	from	"react";import	Form	from	"@/components/Form";	function	Home()	{	const	[todos,	setTodos]	=	React.useState([]);	return	(	);}export	default	Home;In	the	above	code
snippet,	you'll	notice	that	useState	initially	holds	an	empty	array.	It's	important	to	understand	that	useState	returns	two	values:	todos	and	setTodos	(you	can	name	these	anything	you	prefer).The	first	value,	todos,	holds	the	current	value	of	the	state,	while	setTodos	(the	second	value)	is	a	function	used	to	update	the	state.	Clear	so	far?	Now	that	we
have	a	means	to	store	our	data,	let's	define	the	type	of	data	we	intend	to	store.	Essentially,	it	will	be	an	array	of	objects,	where	each	object	holds	the	necessary	information	to	render	our	list	of	todos:const	[todos,	setTodos]	=	React.useState([{	},{	},{	},]);Each	object	in	the	array	will	have	the	following	structure:{title:	"Some	task",	id:
self.crypto.randomUUID(),	is_completed:	false	}Here,	self.crypto.randomUUID()	is	a	method	that	allows	the	browser	to	generate	unique	IDs	for	each	todo	item.	If	you	view	the	console,	you'll	observe	that	the	generated	IDs	are	indeed	unique.console.log	of	our	todo	dataThis	structure	ensures	that	each	todo	item	has	a	title,	a	unique	identifier	(id),	and	a
Boolean	value	indicating	whether	the	task	is	completed	(is_completed).	In	React,	there's	a	concept	called	state	sharing,	which	allows	children	components	to	access	the	state	of	their	parent	components.	This	means	that	the	todo	state	we	created	earlier	can	be	shared	among	all	our	components.The	first	place	we	need	the	data	from	the	state	is	in	our
List	Component.	Let's	pass	the	state	to	the	List	component:	"use	client";import	React	from	"react";	import	TODOList	from	"@/components/TODOList";	function	Home()	{	const	[todos,	setTodos]	=	React.useState([	{	title:	"Some	task",	id:	self.crypto.randomUUID(),	is_completed:	false	},	{	title:	"Some	other	task",	id:	self.crypto.randomUUID(),
is_completed:	true,	},	{	title:	"last	task",	id:	self.crypto.randomUUID(),	is_completed:	false	},	]);	return	(	...	);}export	default	Home;We	already	made	provisions	in	our	List	component	to	receive	a	todos	prop:	function	TODOList({	todos	})	{	return	(	{todos	&&	todos.length	>	0	?	(	todos?.map((item,	index)	=>	(	))	)	:	(	Seems	lonely	in	here,	what	are	you
up	to?	)}	);}Now,	the	todos	prop	will	be	populated	by	the	data	from	our	state,	and	without	any	further	ado,	this	will	work.	Heres	an	image	showing	the	List	created	from	our	todos	data:An	image	showing	a	list	of	our	todosThe	other	place	we	need	the	data	is	in	our	TODOHero	component.	We	dont	need	all	of	the	data	in	that	component	we	just	need	to
count	the	total	number	of	todos	and	the	number	of	completed	todos:	"use	client";import	React	from	"react";	import	TODOHero	from	"@/components/TODOHero";import	TODOList	from	"@/components/TODOList";function	Home()	{	const	[todos,	setTodos]	=	React.useState([	{	title:	"Some	task",	id:	self.crypto.randomUUID(),	is_completed:	false	},	]);
const	todos_completed	=	todos.filter(	(todo)	=>	todo.is_completed	===	true	).length;	const	total_todos	=	todos.length;	return	(	);}export	default	Home;Here,	the	JavaScript	filter	method	is	used	to	filter	out	all	the	todos	with	is_completed	set	to	true,	and	then	we	get	the	length.	The	total_todos	is	simply	the	length	of	the	entire	array.Heres	an	image
showing	the	TODOHero	component	with	updated	values:An	image	showing	the	updated	TODOHero	component	Currently,	our	todo	app	displays	todos	from	our	dummy	data:const	[todos,	setTodos]	=	React.useState([	{	title:	"Some	task",	id:	self.crypto.randomUUID(),	is_completed:	false	},	{	title:	"Some	other	task",	id:	self.crypto.randomUUID(),
is_completed:	true,	},	{	title:	"last	task",	id:	self.crypto.randomUUID(),	is_completed:	false	},]);But	the	purpose	of	creating	a	Form	component	was	to	enable	us	to	create	new	todos	ourselves,	not	rely	on	dummy	data.The	good	news	is	that	just	as	we	have	access	to	the	todo	state	data,	we	can	also	update	the	state	of	a	parent	from	a	children	component.
This	means	we	can	pass	the	function	used	to	update	the	state,	setTodos,	to	our	Form	component:	"use	client";import	React	from	"react";import	Form	from	"@/components/Form";	function	Home()	{	const	[todos,	setTodos]	=	React.useState([	{	title:	"Some	task",	id:	self.crypto.randomUUID(),	is_completed:	false	},	]);	...	return	(	...	);}export	default
Home;With	access	to	the	setTodos	function	in	our	Form	component,	we	can	now	add	new	todos	to	our	state	when	we	submit	the	form:	function	Form({	setTodos	})	{	const	handleSubmit	=	(event)	=>	{	event.preventDefault();	const	value	=	event.target.todo.value;	setTodos((prevTodos)	=>	[	...prevTodos,	{	title:	value,	id:	self.crypto.randomUUID(),
is_completed:	false	},	]);	event.target.reset();	};	return	(	);}export	default	Form;The	code	snippet	below	is	where	the	magic	happens:setTodos((prevTodos)	=>	[	...prevTodos,	{	title:	value,	id:	self.crypto.randomUUID(),	is_completed:	false	},]);It	is	the	equivalent	of	doing	the	following	in	plain	JavaScript:let	prevTodos	=	[];	prevTodos.push({	title:	value,
id:	self.crypto.randomUUID(),	is_completed:	false,});Now	that	we	can	add	new	todos	to	our	state	by	ourselves,	we	can	get	rid	of	the	dummy	data.	We	no	longer	need	it.	Let's	go	back	to	using	an	empty	array:const	[todos,	setTodos]	=	React.useState([]);Now	that	we're	through	with	the	first	part,	we	can	add	todos	as	we	please.	Heres	a	video
demonstrating	it	working:	In	our	List	component,	we	constructed	an	element	with	buttons.	Now,	we're	going	to	attach	an	onClick	event	handler	to	the	first	button.	function	Item({	item	})	{	const	completeTodo	=	()	=>	{	};	return	(	{item?.title}	...	...	);}When	we	click	on	this	button	and	the	completeTodo	handler	is	invoked,	our	objective	is	to:Filter	the
data	to	find	the	todo	that	was	clicked.Modify	the	data	and	set	the	is_completed	value	to	true.Before	we	can	proceed	with	data	modification,	we	need	access	to	the	setTodo	function	in	our	component.	Fortunately,	React	allows	state	to	be	passed	down	to	grandchildren	components.This	means	we	can	pass	the	setTodo	function	from	the	component	to	our
component:	"use	client";import	React	from	"react";	import	TODOList	from	"@/components/TODOList";	function	Home()	{	const	[todos,	setTodos]	=	React.useState([]);	...	return	(	...	);}export	default	Home;Then,	within	our	component,	we	pass	the	setTodo	function	to	our	component:	function	TODOList({	todos,	setTodos	})	{	return	(	{todos	&&
todos.length	>	0	?	(	todos?.map((item,	index)	=>	(	))	)	:	(	Seems	lonely	in	here,	what	are	you	up	to?	)}	);}Now,	within	our	component,	we	can	use	the	setTodos	function	to	update	the	todo's	is_completed	status	when	the	button	is	clicked:	function	Item({	item,	setTodos	})	{	const	completeTodo	=	()	=>	{	setTodos((prevTodos)	=>	prevTodos.map((todo)
=>	todo.id	===	item.id	?	{	...todo,	is_completed:	!todo.is_completed	}	:	todo	)	);	};	return	(	...	...	...	);}Now,	clicking	on	the	first	button	within	the	todo	item	will	toggle	its	completion	status,	effectively	modifying	the	todo	data.When	a	todo	is	marked	as	completed,	we	want	to	enhance	its	visual	representation.	This	includes	adding	a	fill	to	the	SVG	circle
beside	the	todo	title,	creating	the	illusion	that	the	todo	is	completed.	Also,	we	want	to	add	a	strike-through	to	the	text	to	signify	completion.	{item?.title}	;In	the	above	code	snippet,	the	button's	color	changes	based	on	the	completion	status	of	the	todo	item.	If	the	item	is	completed	(is_completed	is	true),	the	SVG	circle	fills	with	a	green	color
otherwise,	it	fills	with	a	dark	color.	Also,	the	todo	title	text	receives	a	line-through	style	if	the	todo	is	completed,	indicating	its	completion	visually.And	now	everything	is	working	perfectly:	When	editing	todos,	we	want	to	have	a	form	in	which	we	can	edit	the	title	of	the	todo.	When	the	edit	button	is	clicked	we	want	to	swap	out	the	everything	in	the	and
have	a	form	instead:	function	Item({	item,	setTodos	})	{	const	[editing,	setEditing]	=	React.useState(false);	const	inputRef	=	React.useRef(null);	const	completeTodo	=	()	=>	{	};	const	handleEdit	=	()	=>	{	setEditing(true);	};	React.useEffect(()	=>	{	if	(editing	&&	inputRef.current)	{	inputRef.current.focus();	inputRef.current.setSelectionRange(
inputRef.current.value.length,	inputRef.current.value.length	);	}	},	[editing]);	const	handleInpuSubmit	=	(event)	=>	{	event.preventDefault();	setEditing(false);	};	const	handleInputBlur	=	()	=>	{	setEditing(false);	};	return	(	{editing	?	(	)	:	(	...	...	...	)}	);}I	know	the	code	above	is	quite	a	handful.	Well,	thats	because	we	are	doing	a	lot	here	but	the	first
thing	we	did	was	create	a	state:const	[editing,	setEditing]	=	React.useState(false);When	the	edit	button	is	clicked	we	set	the	value	of	our	editing	state	to	true,	which	will	render	our	form:const	handleEdit	=	()	=>	{	setEditing(true);};Now,	when	we	submit	the	edit	todo	form	by	pressing	enter,	we	also	want	to	set	the	variable	back	to	false	so	we	can	get
back	our	list:const	handleInpuSubmit	=	(event)	=>	{	event.preventDefault();	setEditing(false);};When	we	mouse	out	of	the	edit	form,	we	also	want	to	set	the	state	back	to	false:const	handleInputBlur	=	()	=>	{	setEditing(false);};Another	thing	we	want	to	do	is	to	focus	the	input	once	editing	is	set	to	true:React.useEffect(()	=>	{	if	(editing	&&
inputRef.current)	{	inputRef.current.focus();	inputRef.current.setSelectionRange(	inputRef.current.value.length,	inputRef.current.value.length	);	}},	[editing]);The	edit	todo	itself	has	a	single	input	field	with	an	onChange	event.	As	we	edit	the	title	in	the	input	field,	we	want	to	modify	the	current	todo	with	the	updated	title:const	handleInputChange	=
(e)	=>	{	setTodos((prevTodos)	=>	prevTodos.map((todo)	=>	todo.id	===	item.id	?	{	...todo,	title:	e.target.value	}	:	todo	)	);};The	JavaScript	array.map()	method	is	perfect	for	this	because	it	returns	a	new	array	with	the	same	number	of	elements	after	modifying	the	title.Heres	a	video	of	it	working	seamlessly:	Deleting	todos	is	a	straightforward
process.	When	the	delete	button	is	clicked,	we	filter	out	the	todo	that	triggered	the	delete	event	from	the	todo	list.	const	handleDelete	=	()	=>	{	setTodos((prevTodos)	=>	prevTodos.filter((todo)	=>	todo.id	!==	item.id));};Dont	forget	to	add	an	onClick	event	to	the	delete	button:	function	Item({	item,	setTodos	})	{	...	const	handleDelete	=	()	=>	{
setTodos((prevTodos)	=>	prevTodos.filter((todo)	=>	todo.id	!==	item.id));	};	return	(	{editing	?	(	...	)	:	(	Delete	)}	);}And	voil!	It	just	works	like	a	charm:	Up	to	this	point,	our	todo	data	has	been	stored	solely	in	the	application's	state:const	[todos,	setTodos]	=	React.useState([]);While	this	approach	works,	it	presents	a	challenge:	when	the	app	is
reloaded,	all	todo	data	is	lost.When	it	comes	to	persisting	data,	we	typically	think	of	databases.	Storing	our	todo	data	in	a	database	offers	several	advantages,	such	as	easy	access	from	any	device.	But	there's	an	alternative:	localStorage.LocalStorage	is	a	browser-based	storage	system.	It	has	some	limitations,	like	a	5MB	storage	cap	and	data
accessibility	restricted	to	the	browser	where	it's	stored.	Despite	these	drawbacks,	we'll	use	localStorage	in	this	tutorial	for	simplicity's	sake.	Currently,	when	we	add	a	new	todo,	we're	only	updating	the	todo	state	in	our	Form	component:	const	handleSubmit	=	(event)	=>	{	event.preventDefault();	const	value	=	event.target.todo.value;
setTodos((prevTodos)	=>	[	...prevTodos,	{	title:	value,	id:	self.crypto.randomUUID(),	is_completed:	false	},	]);	event.target.reset();};We	still	want	to	keep	this,	but	at	the	same	time	we	want	to	add	the	same	data	to	localStorage,	so	well	modify	the	code	above	to	look	like	this:	const	handleSubmit	=	(event)	=>	{	event.preventDefault();	const	value	=
event.target.todo.value;	const	newTodo	=	{	title:	value,	id:	self.crypto.randomUUID(),	is_completed:	false,	};	setTodos((prevTodos)	=>	[...prevTodos,	newTodo]);	const	updatedTodoList	=	JSON.stringify([...todos,	newTodo]);	localStorage.setItem("todos",	updatedTodoList);	event.target.reset();};Did	I	mention	that	you	can	only	store	strings	in
localStorage?	We	cant	store	an	array	or	object	in	localStorage.	That's	why	we	first	convert	our	array	of	todo	data	to	a	string:const	updatedTodoList	=	JSON.stringify([...prevTodos,	newTodo]);And	then	finally	we	persist	the	data	in	localStorage	with	this	code:localStorage.setItem('todos',	updatedTodoList);Youll	notice	we	used	our	todos	state	data	in
our	component:const	updatedTodoList	=	JSON.stringify([...todos,	newTodo]);So	dont	forget	to	pass	the	todo	state	to	the	component:Also,	since	we	can	edit	and	delete	todos	in	our	app,	we	need	to	update	the	data	in	localStorage	accordingly.	First,	pass	the	todos	data	to	our	component:	function	TODOList({	todos,	setTodos	})	{	return	(	{todos	&&
todos.length	>	0	?	(	todos?.map((item,	index)	=>	(	//	pass	the	todos	to	))	)	:	(	Seems	lonely	in	here,	what	are	you	up	to?	)}	);}Now	that	we	have	access	to	the	todo	data	in	our	component,	we	can	persist	data	to	localStorage	after	marking	todo	as	completed:	const	completeTodo	=	()	=>	{	setTodos((prevTodos)	=>	prevTodos.map((todo)	=>	todo.id	===
item.id	?	{	...todo,	is_completed:	!todo.is_completed	}	:	todo	)	);	const	updatedTodos	=	JSON.stringify(todos);	localStorage.setItem("todos",	updatedTodos);};We	also	want	to	persist	the	data	to	localStorage	after	editing	a	todo:	const	handleInpuSubmit	=	(event)	=>	{	event.preventDefault();	const	updatedTodos	=	JSON.stringify(todos);
localStorage.setItem("todos",	updatedTodos);	setEditing(false);};	const	handleInputBlur	=	()	=>	{	const	updatedTodos	=	JSON.stringify(todos);	localStorage.setItem("todos",	updatedTodos);	setEditing(false);};Lastly	we	want	to	also	persist	the	data	to	localStorage	after	we	delete	a	todo:	const	handleDelete	=	()	=>	{	setTodos((prevTodos)	=>
prevTodos.filter((todo)	=>	todo.id	!==	item.id));	const	updatedTodos	=	JSON.stringify(	todos.filter((todo)	=>	todo.id	!==	item.id)	);	localStorage.setItem("todos",	updatedTodos);};And	thats	all	you	need	pretty	easy	right?	Now	when	we	create	new	todos,	theyll	be	persisted	in	localStorage	even	after	reloading	our	app.	Even	though	we've	successfully
persisted	our	data	to	localStorage,	our	app	data	is	still	wiped	when	we	reload	our	app	or	the	browser.	That's	because	we	are	not	yet	utilizing	the	data	stored	in	localStorage.To	address	this,	when	our	app	is	mounted	(loaded),	we	want	to	retrieve	the	data	from	localStorage	and	then	pass	it	to	our	state.In	our	src/app/page.js,	we'll	read	the	data	from
localStorage	and	store	it	in	our	todos	state.	"use	client";import	React	from	"react";import	Form	from	"@/components/Form";import	Header	from	"@/components/Header";import	TODOHero	from	"@/components/TODOHero";import	TODOList	from	"@/components/TODOList";	function	Home()	{	const	[todos,	setTodos]	=	React.useState([]);
React.useEffect(()	=>	{	const	storedTodos	=	localStorage.getItem("todos");	if	(storedTodos)	{	setTodos(JSON.parse(storedTodos));	}	},	[]);	const	todos_completed	=	todos.filter(	(todo)	=>	todo.is_completed	==	true	).length;	const	total_todos	=	todos.length;	return	(	);}	export	default	Home;The	code	inside	the	useEffect()	hook	we	run	once	the
component	is	mounted.This	is	the	part	that	reads	the	data	from	localStorage:const	storedTodos	=	localStorage.getItem("todos");Since	the	data	stored	in	localStorage	is	a	string,	we	have	to	convert	it	back	to	our	array	of	objects	before	we	can	use	it:JSON.parse(storedTodos)And	thats	all	you	need	to	get	it	working.	Now	even	when	we	reload	the	app,
the	data	is	persisted	as	you	can	see	in	this	video:	Congratulations!	After	a	journey	filled	with	coding	and	persistence,	we've	successfully	built	a	simple	yet	functional	todo	app	from	scratch.	The	journey	might	have	been	long,	but	the	result	is	worth	it.You	can	explore	the	entire	source	code	of	the	app	here.	Feel	free	to	dive	into	the	code	and	see	how	it	all
comes	together.But	wait,	there's	more!	If	you're	eager	to	try	out	the	app	yourself,	I	have	a	hosted	version	available	here.	Go	ahead	and	give	it	a	try	to	experience	the	app	firsthand.Thank	you	for	joining	me	on	this	coding	adventure.	I	hope	you've	gained	valuable	insights	into	building	React	apps	and	persisting	data	with	localStorage.If	you	have	any
questions,	feel	free	to	message	on	Twitter	at	@sprucekhalifa,	and	don't	forget	to	follow	me	for	more	insights	and	updates.	Happy	coding!	In	this	article,	we	will	create	a	to-do	app	to	understand	the	basics	of	ReactJS.	We	will	be	working	with	class	based	components	in	this	application	and	use	the	React-Bootstrap	module	to	style	the	components.	This
to-do	list	can	add	new	tasks	we	can	also	delete	the	tasks	by	clicking	on	them.	The	logic	is	handled	by	a	click	event	handler	whenever	the	user	clicks	on	a	task	it	gets	deleted	from	the	list.Lets	have	a	quick	look	at	how	the	final	application	will	look	like:ToDo	App	using	ReactJSSteps	to	create	the	Application:NPX:	It	is	a	package	runner	tool	that	comes
with	npm	5.2+,	npx	is	easy	to	use	CLI	tools.	The	npx	is	used	for	executing	Node	packages.npx	create-react-app	todo-reactcd	todo-reactInstall	the	bootstrap	and	react-bootstrap	modulenpm	install	bootstrapnpm	install	react-bootstrapAfter	following	the	above	steps	the	Folder	structure	will	look	like:Folder	Structure:	The	dependencies	in	package.json
file	will	look	like:"dependencies":	{	"@testing-library/jest-dom":	"^5.16.5",	"@testing-library/react":	"^13.4.0",	"@testing-library/user-event":	"^13.5.0",	"react":	"^18.2.0",	"bootstrap":	"^5.3.0",	"react-bootstrap":	"^2.7.4",	"react-dom":	"^18.2.0",	"react-scripts":	"5.0.1",	"web-vitals":	"^2.1.4"}Example:	Write	the	below	code	in	App.js	file	in	the	src
directory	javascript	//	App.js	Fileimport	React,	{	Component	}	from	"react";import	"bootstrap/dist/css/bootstrap.css";import	Container	from	"react-bootstrap/Container";import	Row	from	"react-bootstrap/Row";import	Col	from	"react-bootstrap/Col";import	Button	from	"react-bootstrap/Button";import	InputGroup	from	"react-
bootstrap/InputGroup";import	FormControl	from	"react-bootstrap/FormControl";import	ListGroup	from	"react-bootstrap/ListGroup";	class	App	extends	Component	{	constructor(props)	{	super(props);	//	Setting	up	state	this.state	=	{	userInput:	"",	list:	[],	};	}	//	Set	a	user	input	value	updateInput(value)	{	this.setState({	userInput:	value,	});	}	//	Add
item	if	user	input	in	not	empty	addItem()	{	if	(this.state.userInput	!==	"")	{	const	userInput	=	{	//	Add	a	random	id	which	is	used	to	delete	id:	Math.random(),	//	Add	a	user	value	to	list	value:	this.state.userInput,	};	//	Update	list	const	list	=	[...this.state.list];	list.push(userInput);	//	reset	state	this.setState({	list,	userInput:	"",	});	}	}	//	Function	to	delete
item	from	list	use	id	to	delete	deleteItem(key)	{	const	list	=	[...this.state.list];	//	Filter	values	and	leave	value	which	we	need	to	delete	const	updateList	=	list.filter((item)	=>	item.id	!==	key);	//	Update	list	in	state	this.setState({	list:	updateList,	});	}	editItem	=	(index)	=>	{	const	todos	=	[...this.state.list];	const	editedTodo	=	prompt('Edit	the	todo:');	if
(editedTodo	!==	null	&&	editedTodo.trim()	!==	'')	{	let	updatedTodos	=	[...todos]	updatedTodos[index].value=	editedTodo	this.setState({	list:	updatedTodos,	});	}	}	render()	{	return	(	TODO	LIST	this.updateInput(item.target.value)	}	aria-label="add	something"	aria-describedby="basic-addon2"	/>	this.addItem()}	>	ADD	{/*	map	over	and	print	items
*/}	{this.state.list.map((item,	index)	=>	{	return	(	{item.value}	this.deleteItem(item.id)}>	Delete	this.editItem(index)}>	Edit	);	})}	);	}}	export	default	App;Steps	to	run	the	Application:Type	the	following	command	in	the	terminal:npm	startType	the	following	URL	in	the	browser:	

Simple	to	do	list.	React	to-do	list.	React	simple	to	do.	Simple	to	do	list	in	react	js.	React	to	do	list	tutorial.	Simple	todo	list	react.




