
	

https://jifanipun.gonujovux.com/621839711607249589931874084319332994170468?fiwolomidakemojesafarekodawojaxexariloxofuwasiguxuzugodivodukekepeverokejitef=kaxotijibunudakudobelebebunumijegufaxazupajopemojalafosakirubetojikanenelarubaromosegetazabixijajotugudiwulekoturuturejowupurozixokaviwogoralakisagaboviromagojixomejepilotegezujofotunilesiginalajuwiki&utm_term=smarter+way+to+learn+javascript&zijiboladolitifojelibevinekukatugipurekixuxeda=ranurivedawafutugoxewilojasumagovajobafijorafefawitofagoxozewizeguroduforukajowejesinivomadubuxawebovawijavivaxizebijajodogamanuranotojerag

If	you	like	the	book	and	the	online	exercises,	give	a	tip	of	the	hat	to	these	readers,	who	took	the	time	to	tell	me	about	some	things	that	werent	working	in	Version	1.0	and	made	other	contributions	as	well.	This	program	is	now	so	much	better	because	of	their	generosity.	Joel	Kohlbusch	for	his	help	with	the	Chapter	7	exercises.	Dorian	Maiga,	who
caught	an	error	in	Chapter	13	of	the	book.	Steven	Noe,	who	spotted	an	egregious	slip	in	Chapter	17.	Douglas	Corin,	who	helped	me	with	a	problem	in	the	exercises	for	Chapter	1,	spotted	errors	in	the	exercises	for	Chapter	8,	alerted	me	to	an	oversight	in	Chapter	10,	corrected	an	error	in	an	exercise	for	Chapter	13,	and	corrected	errors	in	Exercise	14.
Brian	Sheets,	who	spotted	an	error	in	the	exercises	for	Chapter	1.	Simon	Harms	at	,	who	told	me	about	a	psychological	barrier	that	I	need	to	deal	with.	GJ	Griffiths's	friend,	who	spotted	several	errors	and	encouraged	me	to	remove	unhelpful	remarks	from	the	introduction.	Justin	Sparks,	who	suggested	a	useability	improvement.	Tom	Boyles,	who	told
me	about	a	flaw	in	the	timed	exercises.	And	thanks	to	his	son,	who	provided	the	test	condition.	Also	an	error	in	a	Chapter	54	exercise.	Jeff	Santos,	who	helped	me	eliminate	an	ambiguity	in	the	timed	exercises.	Rafael	Oliveira,	whose	comments	suggested	an	improvement	in	my	book	description.Brad	Mellema,	for	pointing	out	an	error	in	the	exercises
for	Chapter	13.Callum	Makkai,	who	alerted	me	to	a	typo	in	Chapters	38	and	an	error	in	Chapter	86,	to	ambiguous	instructions	in	Chapter	6	and	9	exercises,	found	a	bug	in	the	Chapter	13	exercises,	and	spotted	errors	in	the	Chapter	22,	26,	28,	32,	37,	46,	68,	69,	and	72	exercises.	He	also	corrected	errors	in	Chapters	45,	63,	and	73	and	in	Chapter	49,
50,	52,	54,	59,	and	62,	63,	64,	65,	79,	82,	85,	and	89	exercises.	He	has	been	unusually	generous	and	helpful	in	giving	me	encouragement	and	savvy	book-marketing	advice.	Ivan	Nikolov,	who	runs	the	social	site	about	food,	foodolo.	Ivan	spotted	typos	in	the	Chapter	8	exercises,	coding	errors	in	Chapters	23,	25	,	33,	49,	54,	and	61,	and	81	of	the	book,
and	errors	in	Chapter	43	and	65	exercises.	He	also	caught	an	error	in	Chapter	71	and	one	in	a	Chapter	72	exercise.	Allison	Burns,	who	told	me	about	an	error	in	the	Chapter	13	exercises.	Allie	Etcoff,	who	spotted	code	mistakes	in	several	locations.	Thomas	Mechau,	who	corrected	several	flawed	instructions	in	Chapter	24	exercises.	Kamil	Baran,	who
made	me	aware	of	a	shortcoming	in	my	discussion	of	variables.	Vijay	Luthra,	who	suggested	I	clarify	a	Chapter	5	exercise.	Laine	Gebhardt,	who	corrected	some	bad	code	in	a	Chapter	13	exercise.	Alex	Jones,	who	provided	valuable	guidance	on	future	books	in	the	series.	Gene	Kraybill,	who	spotted	a	mistake	in	the	table	of	contents.	Chaz	Hirales,	who
pointed	out	unnecessary	rigidities	in	Chapter	2	and	3	exercises.	Anne	Messenger,	who	spotted	errors	in	the	Chapter	4,	13,	and	14	exercises.	She	also	made	corrections	in	Chapters	5,	6,	11,	13,	17,	and	22	of	the	book.	Matthew	Highland,	who	provided	superb	guidance	on	future	projects.	Alan	Forbes,	who	gave	me	excellent	book-marketing	advice.
George	Schweitzer,	who	corrected	errors	in	Chapters	13,	19,	and	40	exercises.	Peter	Rihn,	who	suggested	I	post	an	errata	section	on	this	page	for	Version	1.0	of	the	book.	Jon	W.	Christopherson,	who	corrected	problems	in	Chapter	12	and	39	exercises	and	typos	in	Chapter	13.	Clyde	Eugene	Makamure,	who	discovered	a	weakness	that	ran	through	the
entire	series	of	exercises.	He	also	caught	errors	in	Chapters	11	and	24,	caught	others	in	Chapter	8,	20,	25,	and	28	exercises	and	suggested	edits	for	clarity	in	the	Chapter	9	exercises.	Nikov	Sieber,	who	prompted	an	improvement	in	the	timed	exercises.	Lane	Watson,	who	made	me	aware	of	an	issue	in	the	timed	exercises	and	helped	me	clarify	an
instruction	in	a	Chapter	11.	He	also	caught	errors	in	Chapter	12	exercises.	And	he	made	a	very	helpful	suggestion	for	improving	exercise	instructions.	Quint	Rahaman,	who	spotted	a	coding	error	in	a	Chapter	18	exercise.	Andrew	Mayne	(thats	right,	the	magician	at),	who	caught	errors	in	Chapter	55	and	in	Chapter	12,	24,	43,	51,	54,	and	61	exercises.
Nils-Gunnar	Nilsson,	who	told	me	about	a	bug	in	Chapter	3	exercises.	Dave	Murley.	It	would	almost	be	easier	to	say	what	he	didn't	help	me	with.	He	spotted	problems	in	Chapters	30,	44,	45,	65,	84,	and	85	of	the	book,	and	in	Chapter	2,	12,	13,	14,	16,	18,	23,	25,	28,	30,	32,	35,	36,	38,	40,	44,	46,	48,	50,	53,	54,	62,	69,	72,	76,	78,	79,	84,	85,	86,	and	88
exercises.	He	helped	me	correct	a	general	problem	with	some	of	the	live	coding	exercises	and	a	weakness	that	ran	through	the	entire	collection	of	exercises.	Sean	Herrala,	who	caught	errors	in	Chapters	11,	21,	and	39.	John	Veld,	who	told	me	about	a	flawed	algorithm	in	the	Chapter	1	exercises.	Glenn	Cole,	who	corrected	errors	in	Chapters	3,	4,	and
17.	Dan	Shafer,	who	corrected	errors	in	Chapter	3	exercises.	Tris	Nefzger,	who	suggested	an	improvement	in	a	Chapter	8	exercise.	Brian	Eggert,	who	told	me	about	a	bug	in	a	Chapter	3	exercise.	Bashir	Aziz,	who	corrected	an	errors	in	Chapter	23	and	37	exercises.	Syad	Ali	Raza,	who	found	a	problem	in	a	Chapter	3	exercise.	Mukesh	Kumar,	who	told
me	about	problems	in	Chapter	9	and	15	exercises.	Lene	Nytoft	Laursen,	who	found	a	problem	in	Chapter	11	exercises.	Leno	Lewis,	who	spotted	problems	in	the	Chapter	3	exercises.	Megan	Stetz,	who	helped	me	with	a	problem	in	the	Chapter	3	exercises.	Ivan	Dimov,	who	found	ambiguities	in	Chapter	39	exercises.	Derek,	who	helped	me	correct	errors
in	Chapter	23	exercises.	Al	Granberg,	who	found	an	error	in	Chapter	16,	helped	me	clear	up	an	ambiguity	in	a	Chapter	12	exercise,	spotted	errors	in	Chapter	15	and	25	exercises,	and	tipped	me	off	to	something	insane	in	Chapter	31	and	32	exercises.	Kevin	Gigiano,	who	corrected	errors	in	Chapter	47	and	in	Chapter	30	and	48	exercises	and	suggested
a	usability	improvement	in	the	exercises	that	learners	are	going	to	love.	Leon	Robert	Walpole,	who	helped	me	clear	up	a	problem	in	a	Chapter	21	exercise.	Carl,	who	helped	me	clear	up	an	instruction	in	a	Chapter	4	exercise.	Swati	Kamtar,	who	suggested	some	improvements	in	Chapter	6	exercises.	Brian	Miller,	who	spotted	an	inaccuracy	in	a	Chapter
6	exercise.	Heron,	who	caught	something	in	a	Chapter	8	exercise.	Bettina	Bergren,	who	helped	me	correct	problems	in	the	Chapter	6	and	8	exercises.	Silvia	Angelov,	who	corrected	an	error	in	Chapter	33.	Lester	Colegado,	who	caught	errors	in	Chapter	6	exercises.	Santosh	Walvekar,	who	caught	a	typo	in	a	Chapter	25	exercise.	Martin	Andrews,	who
told	me	about	errors	in	Chapter	6,	53,	and	72	exercises.	Casey	McCann,	who	found	an	error	in	a	Chapter	54	exercise.	Vinod	Nair,	who	suggested	an	overall	design	improvement	for	the	exercises.	David	White,	who	spotted	an	error	in	Chapter	17.	Ross	Updegraff,	who	found	errors	in	Chapters	28,	48,	and	55,	and	problems	in	Chapter	37,	42,	54,	and	57
exercises.	Mike	Armishaw,	who	told	me	about	an	error	in	a	Chapter	18	exercise.	Paul	Hume,	who	pointed	out	a	mistake	in	Chapter	66.	Ryan	Smith,	who	suggested	an	improvement	to	a	Chapter	27	exercise.	Manzo,	who	spotted	an	error	in	a	Chapter	43	exercise.	Mary	Cooke,	who	found	an	error	in	Chapter	66.	Neil	Chudgar,	who	found	an	inconsistency
between	the	book	and	the	exercises	and	a	wrong	word	in	Chapter	37.	Andy	Schwartz,	who	found	bugs	in	Chapter	3,	7,	10,	and	11	exercises.	Morgan	Atwood,	who	called	my	attention	to	a	typo	in	a	Chapter	71	exercise.	Jason	Bray,	who	spotted	a	problem	in	a	Chapter	7	exercise.	Osvaldo	Dias	dos	Santos,	who	told	me	about	an	error	in	Chapter	21	and	44
exercises.	Uriel	Cota,	who	went	to	a	good	deal	of	trouble	to	document	a	recurring	bug	in	the	exercises.	Shang,	who	alerted	me	to	a	typo.	Eric	Carraway,	who	told	me	about	several	errors	in	the	book.	Francesco	Badraun,	who	made	a	great	suggestion	that	improves	clarity	in	the	autocorrect	exercises.	Unnat	Jain,	who	spotted	several	typos	in	the	book
and	another	in	an	exercise.	Dean	Bunnell,	who	spotted	a	typo	in	the	book.	Chris	Heinze,	who	spotted	a	typo	in	the	book.	Tomas	Sandala,	who	spotted	a	coding	error	in	the	book.	Matt	Jared,	who	told	me	about	a	typo	in	the	Chapter	12	exercises.	Jonah	Koch,	who	told	me	about	an	error	in	a	Chapter	7	exercise.	Learning	JavaScript	is	hell	because	of	two
problems.I	remove	the	problems,	and	you	start	having	fun.The	first	problem	is	retention.	You	remember	only	ten	or	twenty	percent	of	what	you	read.	That	spells	failure.	To	become	fluent	in	a	computer	language,	you	have	to	retain	pretty	much	everything.How	can	you	retain	everything?	Only	by	constantly	being	asked	to	play	everything	back.	That's
why	people	use	flashcards.	But	my	system	does	flashcards	one	better.	After	reading	a	short	chapter,	you	go	to	my	website	and	complete	twenty	interactive	exercises.	Algorithms	check	your	work	to	make	sure	you	know	what	you	think	you	know.	When	you	stumble,	you	do	the	exercise	again.	You	keep	trying	until	you	know	the	chapter	cold.	The
exercises	are	free.The	second	problem	is	comprehension.	Many	learners	hit	a	wall	when	they	try	to	understand	advanced	concepts	like	variable	scope	and	prototypes.	Unfortunately,	they	blame	themselves.	That's	why	the	Dummies	books	sell	so	well.	But	the	fault	lies	with	the	authors,	coding	virtuosos	who	lack	teaching	talent.	I'm	the	opposite	of	the
typical	software	book	author.	I'll	never	code	fast	enough	to	land	a	job	at	Google.	But	I	can	teach.Anyway,	most	comprehension	problems	are	just	retention	problems	in	disguise.	If	you	get	lost	trying	to	understand	variable	scope,	it's	because	you	don't	remember	how	functions	work.	Thanks	to	the	interactive	exercises	on	my	website,	you'll	always
understand	and	remember	everything	necessary	to	confidently	tackle	the	next	concept."I've	signed	up	to	a	few	sites	like	Udemy,	Codecademy,	FreeCodeCamp,	Lynda,	YouTube	videos,	even	searched	on	Coursera	but	nothing	seemed	to	work	for	me.	This	book	takes	only	10	minutes	each	chapter	and	after	that,	you	can	exercise	what	you've	just	learned
right	away!"	Amazon	reviewer	Constanza	MoralesBetter	than	just	reading.	And	more	fun.You'll	spend	two	to	three	times	as	much	time	practicing	as	reading.	It's	how	you	wind	up	satisfied,	confident,	and	proud,	instead	of	confused,	discouraged,	and	defeated.	And	since	many	people	find	doing	things	more	enjoyable	than	reading	things,	it	can	be	a
pleasure	to	learn	this	way,	quite	apart	from	the	impressive	results	you	achieve."Very	effective	and	fun."	Amazon	reviewer	A.	BergaminiWritten	especially	for	beginners.I	wrote	the	book	and	exercises	especially	for	people	who	are	new	to	programming.	Making	no	assumptions	about	what	you	already	know,	I	walk	you	through	JavaScript	slowly,
patiently.	I	explain	every	little	thing	in	sixth-grade	English.	I	avoid	unnecessary	technical	jargon	like	the	plague.	(Face	it,	fellow	authors,	it	is	the	plague.)"The	layman	syntax	he	uses...makes	it	much	easier	to	suddenly	realize	a	concept	that	seemed	abstract	and	too	hard	to	wrap	your	head	around	is	suddenly	not	complicated	at	all."	Amazon	reviewer
IMHOThe	exercises	keep	you	focused,	give	you	extra	practice	where	you're	shaky,	and	prepare	you	for	each	next	step.	Every	lesson	is	built	on	top	of	a	solid	foundation	that	you	and	I	have	carefully	constructed.	Each	individual	step	is	small.	But,	as	Amazon	reviewer	James	Toban	says,	when	you	get	to	the	end	of	the	book,	you've	built	"a	tower	of
JavaScript."If	you're	an	accomplished	programmer	already,	my	book	may	be	too	elementary	for	you.	(Do	you	really	need	to	be	told	what	a	variable	is?)	But	if	you're	new	to	programming,	more	than	a	thousand	five-star	reviews	are	pretty	good	evidence	that	my	book	may	be	just	the	one	to	get	you	coding	JavaScript	successfully."Mark	Myers'	method	of
getting	what	can	be...difficult	information	into	a	format	that	makes	it	exponentially	easier	to	consume,	truly	understand,	and	synthesize	into	real-world	application	is	beyond	anything	I've	encountered	before."	Amazon	reviewer	Jason	A.	Ruby	This	article	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding
inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.	(August	2009)	(Learn	how	and	when	to	remove	this	message)Programming	languages	can	be	grouped	by	the	number	and	types	of	paradigms	supported.A	concise	reference	for	the	programming	paradigms	listed	in	this	article.Concurrent	programming	have	language
constructs	for	concurrency,	these	may	involve	multi-threading,	support	for	distributed	computing,	message	passing,	shared	resources	(including	shared	memory),	or	futuresActor	programming	concurrent	computation	with	actors	that	make	local	decisions	in	response	to	the	environment	(capable	of	selfish	or	competitive	behaviour)Constraint
programming	relations	between	variables	are	expressed	as	constraints	(or	constraint	networks),	directing	allowable	solutions	(uses	constraint	satisfaction	or	simplex	algorithm)Dataflow	programming	forced	recalculation	of	formulas	when	data	values	change	(e.g.	spreadsheets)Declarative	programming	describes	what	computation	should	perform,
without	specifying	detailed	state	changes	cf.	imperative	programming	(functional	and	logic	programming	are	major	subgroups	of	declarative	programming)Distributed	programming	have	support	for	multiple	autonomous	computers	that	communicate	via	computer	networksFunctional	programming	uses	evaluation	of	mathematical	functions	and	avoids
state	and	mutable	dataGeneric	programming	uses	algorithms	written	in	terms	of	to-be-specified-later	types	that	are	then	instantiated	as	needed	for	specific	types	provided	as	parametersImperative	programming	explicit	statements	that	change	a	program	stateLogic	programming	uses	explicit	mathematical	logic	for	programmingMetaprogramming
writing	programs	that	write	or	manipulate	other	programs	(or	themselves)	as	their	data,	or	that	do	part	of	the	work	at	compile	time	that	would	otherwise	be	done	at	runtimeTemplate	metaprogramming	metaprogramming	methods	in	which	a	compiler	uses	templates	to	generate	temporary	source	code,	which	is	merged	by	the	compiler	with	the	rest	of
the	source	code	and	then	compiledReflective	programming	metaprogramming	methods	in	which	a	program	modifies	or	extends	itselfObject-oriented	programming	uses	data	structures	consisting	of	data	fields	and	methods	together	with	their	interactions	(objects)	to	design	programsClass-based	object-oriented	programming	in	which	inheritance	is
achieved	by	defining	classes	of	objects,	versus	the	objects	themselvesPrototype-based	object-oriented	programming	that	avoids	classes	and	implements	inheritance	via	cloning	of	instancesPipeline	programming	a	simple	syntax	change	to	add	syntax	to	nest	function	calls	to	language	originally	designed	with	noneRule-based	programming	a	network	of
rules	of	thumb	that	comprise	a	knowledge	base	and	can	be	used	for	expert	systems	and	problem	deduction	&	resolutionVisual	programming	manipulating	program	elements	graphically	rather	than	by	specifying	them	textually	(e.g.	Simulink);	also	termed	diagrammatic	programming[1]List	of	multi-paradigm	programming	languagesLanguageParadigm
countConcurrentConstraintsDataflowDeclarativeDistributedFunctionalMetaprogrammingGenericImperativeLogicReflectionObject-orientedPipelinesVisualRule-basedOtherAda[2][3][4][5][6]5Yes[a	1]YesYesYesYes[a	2]ALF2YesYesAmigaE[citation	needed]2YesYes[a	2]APL3YesYesArray	(multi-dimensional)BETA[citation	needed]3YesYesYes[a	2]C++7
(15)Yes[7][8][9]Library[10]Library[11][12]Library[13][14]Library[15][16]YesYes[17]Yes[a	3]YesLibrary[18][19]Library[20]Yes[a	2]Library[21]Library[22]Array	(multi-dimensional;	using	STL)C#6	(7)YesLibrary[a	4]Yes[a	5]YesYesYesYes[a	2]Reactive[a	6]ChucK[citation	needed]3YesYesYes[a	2]Claire2YesYes[a	2]Clojure5Yes[23]
[24]YesYes[25]Yes[26]Library[27]Yes[28]Multiple	dispatch,[29]	Agents[30]Common	Lisp7	(14)Library[31]Library[32]Library[33]Yes[34]Library[35]YesYesYes[36]YesLibrary[37]YesYes[a	7][a	2][38]Library[39]Library[40]Library[41]Multiple	dispatch,	meta-OOP	system,[42]	Language	is	extensible	via	metaprogramming.Curl5YesYes[a	3]YesYesYes[a
2]Curry4YesYesYesYesD	(version	2.0)[43][44]7Yes[a	8]YesYes[45][a	3]Yes[a	3]YesYesYes[a	2]Delphi3Yes[a	3]YesYes[a	2]Dylan[citation	needed]3YesYesYes[a	2]E3YesYesYes[a	2]ECMAScript[46][47]	(ActionScript,	E4X,	JavaScript,	JScript)4	(5)Partial[a	9][a	10]Library[48][49]YesYesYesYes[a	11]Library[50][51]Reactive,[a	12][52]	event	driven[a	13][a
14]Erlang3YesYesYesYesYesElixir4YesYesYesYesYesElm6YesYesYesYes	(pure)[a	15]YesYesReactiveF#7	(8)Yes[a	8]Library[a	4]YesYesYesYesYesYes[a	2]Reactive[a	6]Fortran4	(5)YesYes[a	15]Yes[a	16]Yes[a	2]Array	(multi-dimensional)Go4YesYesYesYesHaskell8	(15)YesLibrary[53]Library[54]YesLibrary[55]Yes	(lazy)	(pure)[a
15]Yes[56]YesYesLibrary[57]Partial[a	17]YesYesLibrary[58]Literate,	reactive,	dependent	types	(partial)Io4Yes[a	8]YesYesYes[a	11]J[citation	needed]3YesYesYes[a	2]Java6YesLibrary[59]Library[60]YesYesYesYesYes[a	2]Julia9	(17)YesLibrary[61]Library[62][63]Library[64]YesYes	(eager)YesYesYesLibrary[65]YesPartial[a	18]YesLibrary[66][67]Multiple
dispatch,Array	(multi-dimensional);	optionally	lazy[68]	and	reactive	(with	libraries)Kotlin8YesYesYesYesYesYesYesYesLabVIEW4YesYesYesYesLava2Yes[a	2]YesLispWorks	(version	6.0	with	support	for	symmetric	multi-processing,	rules,	logic	(Prolog),	CORBA)9YesYesYesYesYesYesYesYes[a	2]YesLua[citation	needed]3YesYesYes[a	11]MATLAB6
(10)Toolbox[69]Toolbox[70]Yes[71]Toolbox[72]Yes[73]Yes[74]Yes[75]Yes[76]Yes[77]Array	(multi-dimensional)Nemerle7YesYesYesYesYesYesYes[a	2]Object	Pascal4YesYesYesYes[a	2]OCaml4YesYesYesYes[a	2]Oz11YesYesYesYesYesYesYesYesYes[a	2]YesYesPerl[citation	needed]8	(9)Yes[78]Yes[79]YesYesYesYes[a	2]Yes[a	2]YesPHP[80][81]
[82]4YesYesYesYes[a	2]Poplog3YesYesYesPrograph3YesYes[a	2]YesPython5	(10)Library[83][84]Library[85]Library[86]YesYes[87][88]Yes[89][90]YesLibrary[91]YesYes[a	2]StructuredR4	(6)Library[92]Library[93]YesYesYesYesYes[94]Array	(multi-
dimensional)Racket10Yes[95]Yes[96]Yes[97]Yes[98]YesYesYesYesYesYesLazy[99]Raku10Yes[100]Library[101]Yes[102]Library[103]YesYes[104]Yes[105]YesYes[106]Yes[107]YesMultiple	dispatch,	lazy	lists,	reactive.ROOP3YesYesYesRuby5YesYesYesYesYes[a	2]Rust	(version	1.0.0-alpha)6Yes[a	8]YesYes[108][109]Yes[110]YesYesLinear,	affline,	and
ownership	typesSather[citation	needed]2YesYes[a	2]Scala[111][112]9Yes[a	8]Yes[a	19]YesYesYesYesYesYesYes[a	2]Simula[citation	needed]2YesYes[a	2]SISAL3YesYesYesSpreadsheets2YesYesSwift7YesYesYesYesYesYesYes[a	2]Block-structuredTcl	with	Snit	extension[citation	needed]3Yes[113]YesYes[a	11][114]Visual	Basic	.NET6	(7)YesLibrary[a
4]YesYesYesYesYes[a	2]Reactive[a	6]Windows	PowerShell6YesYesYesYesYes[a	2]YesWolfram	Language	&	Mathematica13[115]	(14)YesYesYesYesYesYesYesYesYesYesYesYesYes[116]YesKnowledge	BasedProgramming	paradigmList	of	programming	languages	by	typeDomain-specific	languageDomain-specific	multimodeling^	rendezvous	and	monitor-
like	based^	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z	aa	ab	ac	ad	ae	af	ag	ah	ai	class-based^	a	b	c	d	e	template	metaprogramming^	a	b	c	using	TPL	Dataflow^	only	lambda	support	(lazy	functional	programming)^	a	b	c	using	Reactive	Extensions	(Rx)^	multiple	dispatch,	method	combinations^	a	b	c	d	e	actor	programming^	promises,	native
extensions^	using	Node.js'	cluster	module	or	child_process.fork	method,	web	workers	in	the	browser,	etc.^	a	b	c	d	Prototype-based^	using	Reactive	Extensions	(RxJS)^	in	Node.js	via	their	events	module^	in	browsers	via	their	native	EventTarget	API^	a	b	c	purely	functional^	parameterized	classes^	immutable^	Uses	structs	with	function
polymorphism	and	multiple	dispatch^	Akka	Archived	2013-01-19	at	the	Wayback	Machine^	Bragg,	S.D.;	Driskill,	C.G.	(2022	September	1994).	"Diagrammatic-graphical	programming	languages	and	DoD-STD-2167A".	Proceedings	of	AUTOTESTCON	'94	(IEEEXplore).	Institute	of	Electrical	and	Electronics	Engineers	(IEEE).	pp.211220.
doi:10.1109/AUTEST.1994.381508.	ISBN978-0-7803-1910-3.	S2CID62509261.^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	9:	Tasks	and	Synchronization^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3	Annex	E:	Distributed	Systems^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	12:	Generic	Units^	Ada
Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	6:	Subprograms^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	3.9	Tagged	Types	and	Type	Extensions^	Thread	support^	Atomics	support^	Memory	model^	Gecode^	SystemC^	Boost.Iostreams^	Boolinq^	"AraRat"	(PDF).	Archived	from	the	original	(PDF)	on	2019-08-19.	Retrieved
2019-09-15.^	OpenMPI^	Boost.MPI^	Boost.MPL^	LC++^	Castor	Archived	2013-01-25	at	the	Wayback	Machine^	Reflect	Library^	N3534^	Boost.Spirit^	Clojure	-	Concurrent	Programming^	Clojure	-	core.async^	Clojure	-	Functional	Programming^	Clojure	-	Macros^	Clojure	-	core.logic^	Clojure	-	Threading	Macros	Guide^	Multimethods	and
Hierarchies^	Agents	and	Asynchronous	Actions^	"concurrency".	CLiki.^	[1]	constraint	programming	inside	CL	through	extensions^	[2]	dataflow	extension^	[3]	by	creating	DSLs	using	the	built-in	metaprogramming;	also	see	note	on	functional,	constraint	and	logic	paradigms,	which	are	part	of	declarative^	[4]	MPI,	etc	via	language	extensions^
template	metaprogramming	using	macros	(see	C++)^	[5]	[6]	[7]	Prolog	implemented	as	a	language	extension^	Common	Lisp	Object	System	see	Wikipedia	article	on	CLOS,	the	Common	Lisp	Object	System.^	implemented	by	the	user	via	a	short	macro,	example	of	implementation^	-	Visual	programming	tool	based	on	Common	Lisp^	[8]	rule-based
programming	extension^	[9]	Archived	2018-04-26	at	the	Wayback	Machine	through	the	Meta	Object	Protocol^	D	Language	Feature	Table^	Phobos	std.algorithm^	D	language	String	Mixins^	The	Little	JavaScripter	demonstrates	fundamental	commonality	with	Scheme,	a	functional	language.^	Object-Oriented	Programming	in	JavaScript	Archived
2019-02-10	at	the	Wayback	Machine	gives	an	overview	of	object-oriented	programming	techniques	in	JavaScript.^	"React	A	JavaScript	library	for	building	user	interfaces".	2019-04-08.^	"TNG-Hooks".	GitHub.	2019-04-08.^	"Lodash	documentation".	2019-04-08.^	"mori".	2019-04-08.^	"TNG-Hooks".	GitHub.	2019-04-08.^	"Prolog	embedding".
Haskell.org.^	"Functional	Reactive	Programming".	HaskellWiki.^	Cloud	Haskell^	"Template	Haskell".	HaskellWiki.^	"Logict:	A	backtracking	logic-programming	monad".	Haskell.org.^	Kollmansberger,	Steve;	Erwig,	Martin	(30	May	2006).	"Haskell	Rules:	Embedding	Rule	Systems	in	Haskell"	(PDF).	Oregon	State	University.^	JSR	331:	Constraint
Programming	API^	Google	Cloud	Platform	Dataflow	SDK^	"JuliaOpt/JuMP.jl".	GitHub.	JuliaOpt.	11	February	2020.	Retrieved	12	February	2020.^	"GitHub	-	MikeInnes/DataFlow.jl".	GitHub.	2019-01-15.^	"GitHub	-	JuliaGizmos/Reactive.jl:	Reactive	programming	primitives	for	Julia".	GitHub.	2018-12-28.^	Query	almost	anything	in	julia^	A	collection	of
Kanren	implementations	in	Julia^	"GitHub	-	abeschneider/PEGParser.jl:	PEG	Parser	for	Julia".	GitHub.	2018-12-03.^	"GitHub	-	gitfoxi/Parsimonious.jl:	A	PEG	parser	generator	for	Julia".	GitHub.	2017-08-03.^	Lazy	"Execute	loop	iterations	in	parallel".	mathworks.com.	Retrieved	21	October	2016.^	"Write	Constraints".	mathworks.com.	Retrieved	21
October	2016.^	"Getting	Started	with	SimEvents".	mathworks.com.	Retrieved	21	October	2016.^	"Execute	loop	iterations	in	parallel".	mathworks.com.	Retrieved	21	October	2016.^	"Execute	MATLAB	expression	in	text	-	MATLAB	eval".	mathworks.com.	Retrieved	21	October	2016.^	"Determine	class	of	object".	mathworks.com.	Retrieved	21	October
2016.^	"Class	Metadata".	mathworks.com.	Retrieved	21	October	2016.^	"Object-Oriented	Programming".	mathworks.com.	Retrieved	21	October	2016.^	"Simulink".	mathworks.com.	Retrieved	21	October	2016.^	interpreter	based	threads^	Higher	Order	Perl^	PHP	Manual,	Chapter	17.	Functions^	PHP	Manual,	Chapter	19.	Classes	and	Objects	(PHP
5)^	PHP	Manual,	Anonymous	functions^	"Parallel	Processing	and	Multiprocessing	in	Python".	Python	Wiki.	Retrieved	21	October	2016.^	"threading	Higher-level	threading	interface".	docs.python.org.	Retrieved	21	October	2016.^	"python-constraint".	pypi.python.org.	Retrieved	21	October	2016.^	"DistributedProgramming".	Python	Wiki.	Retrieved
21	October	2016.^	"Chapter	9.	Metaprogramming".	chimera.labs.oreilly.com.	Archived	from	the	original	on	23	October	2016.	Retrieved	22	October	2016.^	"Metaprogramming".	readthedocs.io.	Retrieved	22	October	2016.^	"PEP	443	Single-dispatch	generic	functions".	python.org.	Retrieved	22	October	2016.^	"PEP	484	Type	Hints".	python.org.
Retrieved	22	October	2016.^	"PyDatalog".	Retrieved	22	October	2016.^	"Futureverse".^	"future	batchtools".^	"Magrittr:	A	Forward	Pipe	Operator	for	R".	cran.r-project.org\access-date=13	July	2017.	17	November	2020.^	Racket	Guide:	Concurrency	and	Synchronization^	The	Rosette	Guide^	FrTime:	A	Language	for	Reactive	Programs^	Racket
Guide:	Distributed	Places^	Lazy	Racket^	Channels	and	other	mechanisms^	"Problem	Solver	module".^	Feed	operator^	Cro	module^	"Meta-programming:	What,	why	and	how".	2011-12-14.^	Parametrized	Roles^	"Meta-object	protocol	(MOP)".^	Classes	and	Roles^	"The	Rust	macros	guide".	Rust.	Retrieved	19	January	2015.^	"The	Rust	compiler
plugins	guide".	Rust.	Retrieved	19	January	2015.^	The	Rust	Reference	6.1.3.1^	An	Overview	of	the	Scala	Programming	Language^	Scala	Language	Specification^	"Tcl	Programming/Introduction".	en.wikibooks.org.	Retrieved	22	October	2016.^	"TCLLIB	-	Tcl	Standard	Library:	snitfaq".	sourceforge.net.	Retrieved	22	October	2016.^	Notes	for
Programming	Language	Experts,	Wolfram	Language	Documentation.^	External	Programs,	Wolfram	Language	Documentation.Jim	Coplien,	Multiparadigm	Design	for	C++,	Addison-Wesley	Professional,	1998.Retrieved	from	"	free	encyclopedia	that	anyone	can	edit.107,583	active	editors	7,025,415	articles	in	EnglishSir	William	Gordon-Cumming
(20July	1848	20May	1930)	was	a	Scottish	landowner,	soldier	and	socialite.	He	was	the	central	figure	in	the	royal	baccarat	scandal	of	1891.	He	joined	the	British	Army	in	1868	and	saw	service	in	South	Africa,	Egypt	and	the	Sudan;	he	served	with	distinction	and	rose	to	the	rank	of	lieutenant-colonel.	An	adventurer,	he	also	hunted	in	the	US	and	India.	A
friend	of	Edward,	Prince	of	Wales,	for	over	20	years,	in	1890	he	attended	a	house	party	at	Tranby	Croft,	where	he	took	part	in	a	game	of	baccarat	at	the	behest	of	the	prince.	During	the	course	of	two	nights'	play	he	was	accused	of	cheating,	which	he	denied.	After	news	of	the	affair	leaked	out,	he	sued	five	members	of	the	party	for	slander;	Edward	was
called	as	a	witness.	The	case	was	a	public	spectacle	in	the	UK	and	abroad,	but	the	verdict	went	against	Gordon-Cumming	and	he	was	ostracised	from	polite	society.	After	the	court	case	he	married	an	American	heiress,	but	their	relationship	was	unhappy.	(Fullarticle...)Recently	featured:	Great	Wilbraham	(causewayed	enclosure)Henry	de
HinuberHurricane	Claudette	(2003)ArchiveBy	emailMore	featured	articlesAboutPostcard	with	a	Fula	woman...	that	Franois-Edmond	Fortier	published	more	than	3,300	postcards	of	French	West	Africa	(example	pictured)	between	1901	and	1920?...	that	a	language	riot	broke	out	between	members	of	Our	Lady	of	the	Rosary	in	1917?...	that	Oleksandr
Rodin's	opera	Kateryna	was	staged	despite	barricades,	bombings,	and	an	air-raid	alarm?...	that	Paul	Among	the	People	treats	the	Pauline	epistles	as	sources	comparable	to	Homer,	Aristophanes	and	Virgil	on	Greco-Roman	attitudes?...	that	Gyula	Kakas	competed	at	two	Olympics	in	gymnastics,	set	the	Hungarian	pole-vault	record,	and	played	for	a
national-champion	football	club?...	that	a	lyric	in	Beautiful	Chaos	was	praised	for	"spreading	queer	joy"?...	that	defending	champions	Bermuda	did	not	compete	in	the	women's	football	tournament	at	the	2015	Island	Games?...	that	Vatican	Taekwondo	has	no	registered	athletes	or	coaches?...	that	Iceland's	entry	for	Eurovision	in	2025	brought	out	a	line
of	Ash	Wednesday	costumes?ArchiveStart	a	new	articleNominate	an	articleMuhammadu	BuhariFormer	president	of	Nigeria	Muhammadu	Buhari	(pictured)	dies	at	the	age	of	82.Clashes	between	Druze	militias	and	the	Syrian	Armed	Forces	result	in	hundreds	of	deaths.The	International	Criminal	Court	issues	arrest	warrants	for	Taliban	leaders
Hibatullah	Akhundzada	and	Abdul	Hakim	Haqqani	over	their	alleged	persecution	of	women	in	Afghanistan.Flooding	in	Central	Texas,	United	States,	leaves	at	least	140	people	dead.Ongoing:	Gaza	warRussian	invasion	of	UkrainetimelineSudanese	civil	wartimelineRecent	deaths:	Andrea	GibsonRaymond	GuiotFelix	BaumgartnerFauja	SinghBradley	John
MurdochFrank	BarrieNominate	an	articleJuly	20Forensic	experts	at	the	site	of	the	Suru	bombing1807	French	brothers	Claude	and	Nicphore	Nipce	received	a	patent	for	their	Pyrolophore,	one	of	the	world's	first	internal	combustion	engines.1951	Abdullah	I	of	Jordan	was	assassinated	while	visiting	the	Al-Aqsa	Mosque	in	Jerusalem.1976	The	Viking	1
lander	became	the	first	spacecraft	to	successfully	land	on	Mars	and	perform	its	mission.1997	USSConstitution,	one	of	the	United	States	Navy's	original	six	frigates,	sailed	for	the	first	time	in	116	years	after	a	full	restoration.2015	A	suicide	attack	(aftermath	pictured)	in	Suru,	Turkey,	for	which	Islamic	State	of	Iraq	and	the	Levant	(ISIL)	claimed
responsibility,	killed	34	people	and	injured	104	others.Alexander	the	Great	(b.356	BC)Amanda	Clement	(d.1971)Bruce	Lee	(d.1973)Gisele	Bndchen	(b.1980)More	anniversaries:	July	19July	20July	21ArchiveBy	emailList	of	days	of	the	yearAboutC/2022	E3	(ZTF)	is	a	non-periodic	comet	from	the	Oort	cloud	that	was	discovered	by	the	Zwicky	Transient
Facility	(ZTF)	in	2022.	With	a	comet	nucleus	of	around	1	kilometre	(0.62mi)	in	diameter,	C/2022	E3	rotates	on	its	axis	once	every	8.5	to	8.7	hours.	Its	tails	of	dust	and	gas	extended	for	millions	of	kilometers	and,	during	January	2023,	an	anti-tail	was	also	visible.	The	comet	reached	its	most	recent	perihelion	in	January	2023,	at	a	distance	of	1.11AU
(166millionkm;	103millionmi)	from	the	sun,	and	the	closest	approach	to	Earth	was	a	few	weeks	later,	at	a	distance	of	0.28AU	(42millionkm;	26millionmi).	The	comet	reached	magnitude	5	and	was	visible	with	the	naked	eye	under	moonless	dark	skies.	This	photograph	of	C/2022	E3	was	taken	in	January	2023	and	released	by	the	Italian	National
Institute	for	Astrophysics.Photograph	credit:	Alessandro	Bianconi;	National	Institute	for	AstrophysicsRecently	featured:	Passion	fruitBasilica	of	StPaul,	RabatClouded	ApolloArchiveMore	featured	picturesCommunity	portal	The	central	hub	for	editors,	with	resources,	links,	tasks,	and	announcements.Village	pump	Forum	for	discussions	about	Wikipedia
itself,	including	policies	and	technical	issues.Site	news	Sources	of	news	about	Wikipedia	and	the	broader	Wikimedia	movement.Teahouse	Ask	basic	questions	about	using	or	editing	Wikipedia.Help	desk	Ask	questions	about	using	or	editing	Wikipedia.Reference	desk	Ask	research	questions	about	encyclopedic	topics.Content	portals	A	unique	way	to
navigate	the	encyclopedia.Wikipedia	is	written	by	volunteer	editors	and	hosted	by	the	Wikimedia	Foundation,	a	non-profit	organization	that	also	hosts	a	range	of	other	volunteer	projects:	CommonsFree	media	repository	MediaWikiWiki	software	development	Meta-WikiWikimedia	project	coordination	WikibooksFree	textbooks	and	manuals
WikidataFree	knowledge	base	WikinewsFree-content	news	WikiquoteCollection	of	quotations	WikisourceFree-content	library	WikispeciesDirectory	of	species	WikiversityFree	learning	tools	WikivoyageFree	travel	guide	WiktionaryDictionary	and	thesaurusThis	Wikipedia	is	written	in	English.	Many	other	Wikipedias	are	available;	some	of	the	largest	are
listed	below.	1,000,000+	articles	DeutschEspaolFranaisItalianoNederlandsPolskiPortugusSvenskaTing	Vit	250,000+	articles	Bahasa	IndonesiaBahasa	MelayuBn-lm-gCataletinaDanskEestiEsperantoEuskaraMagyarNorsk	bokmlRomnSimple	EnglishSloveninaSrpskiSrpskohrvatskiSuomiTrkeOzbekcha	50,000+	articles
AsturianuAzrbaycancaBosanskiFryskGaeilgeGalegoHrvatskiKurdLatvieuLietuviNorsk	nynorskShqipSloveninaRetrieved	from	"	2This	article	needs	additional	citations	for	verification.	Please	help	improve	this	article	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.Find	sources:"1807"news	newspapers	books
scholar	JSTOR	(November	2015)	(Learn	how	and	when	to	remove	this	message)Calendar	yearYearsMillennium2ndmillenniumCenturies18thcentury19thcentury	20thcenturyDecades1780s1790s1800s	1810s1820sYears1804180518061807	180818091810vteFebruary	7:	Napoleon	leads	French	troops	into	Russia	in	winter,	and	fights	the	Battle	of
Eylau.June	14:	Napoleon	triumphs	over	Russia's	General	Benningsen,	at	the	Battle	of	Friedland.1807	(MDCCCVII)	was	a	common	year	starting	on	Thursday	of	the	Gregorian	calendarand	a	common	year	starting	on	Tuesday	of	the	Julian	calendar,	the	1807th	year	of	the	Common	Era	(CE)	and	Anno	Domini	(AD)	designations,	the	807th	year	of	the
2ndmillennium,	the	7th	year	of	the	19thcentury,	and	the	8th	year	of	the	1800s	decade.	As	of	the	start	of	1807,	the	Gregorian	calendar	was	12	days	ahead	of	the	Julian	calendar,	which	remained	in	localized	use	until	1923.	Calendar	year	1807	by	topicHumanitiesArchaeologyArchitectureArtLiteraturePoetryMusicBy
countryAustraliaBrazilCanadaDenmarkFranceGermanyNew	ZealandNorwayRussiaSouth	AfricaSwedenUnited	KingdomUnited	StatesOther	topicsRail	transportScienceSportsLists	of	leadersSovereign	statesSovereign	state	leadersTerritorial	governorsReligious	leadersLawBirth	and	death	categoriesBirthsDeathsEstablishments	and	disestablishments
categoriesEstablishmentsDisestablishmentsWorks	categoryWorksvte1807	in	various	calendarsGregorian	calendar1807MDCCCVIIAb	urbe	condita2560Armenian	calendar1256	Assyrian	calendar6557Balinese	saka	calendar17281729Bengali	calendar12131214Berber	calendar2757British	Regnal	year47Geo.348Geo.3Buddhist	calendar2351Burmese
calendar1169Byzantine	calendar73157316Chinese	calendar	(FireTiger)4504	or	4297to	(FireRabbit)4505	or	4298Coptic	calendar15231524Discordian	calendar2973Ethiopian	calendar17991800Hebrew	calendar55675568Hindu	calendars-	Vikram	Samvat18631864-	Shaka	Samvat17281729-	Kali	Yuga49074908Holocene	calendar11807Igbo
calendar807808Iranian	calendar11851186Islamic	calendar12211222Japanese	calendarBunka	4()Javanese	calendar17331734Julian	calendarGregorian	minus	12	daysKorean	calendar4140Minguo	calendar105	before	ROC105Nanakshahi	calendar339Thai	solar	calendar23492350Tibetan	calendar(male	Fire-Tiger)1933	or	1552	or	780to(female	Fire-
Hare)1934	or	1553	or	781Wikimedia	Commons	has	media	related	to	1807.January	7	The	United	Kingdom	of	Great	Britain	and	Ireland	issues	an	Order	in	Council	prohibiting	British	ships	from	trading	with	France	or	its	allies.[1]January	20	The	Sierra	Leone	Company,	faced	with	bankruptcy	because	of	the	imminent	abolition	of	the	slave	trade	in	British
colonies,	petitions	the	British	government	for	purchase	and	transfer	of	its	property	to	the	Crown;	Parliament	approves	the	transfer	on	July	29,	and	it	takes	effect	on	January	1,	1808.[2]February	3	Napoleonic	Wars	and	Anglo-Spanish	War:	Battle	of	Montevideo	The	British	Army	captures	Montevideo	from	the	Spanish	Empire,	as	part	of	the	British
invasions	of	the	Ro	de	la	Plata.February	7	Napoleon	leads	the	forces	of	the	French	Empire	in	an	invasion	of	the	Russian	Empire,	and	begins	fighting	at	the	Battle	of	Eylau	against	Russian	and	Prussian	forces.[3]February	8	Battle	of	Eylau:	Napoleon	fights	a	hard	but	inconclusive	battle	against	the	Russians	under	Bennigsen.February	10	The	Survey	of
the	Coast	(renamed	the	United	States	Coast	Survey	in	1836	and	the	United	States	Coast	and	Geodetic	Survey	in	1878)	is	established;	work	begins	on	August	3,	1816.February	17	Henry	Christopher	is	elected	first	President	of	the	State	of	Haiti,	ruling	the	northern	part	of	the	country.February	19	Burr	conspiracy:	In	Alabama,	former	Vice	President	of
the	United	States	Aaron	Burr	is	tried	for	conspiracy,	but	acquitted.February	23	The	Slave	Trade	Act	is	passed	in	the	House	of	Commons	of	the	United	Kingdom	by	an	overwhelming	majority.[4]March	2	The	United	States	Congress	passes	the	Act	Prohibiting	Importation	of	Slaves	"into	any	port	or	place	within	the	jurisdiction	of	the	United	States	...	from
any	foreign	kingdom,	place,	or	country"	(to	take	effect	January	1,	1808).March	25The	United	Kingdom	Slave	Trade	Act	becomes	law	abolishing	the	slave	trade	in	most	of	the	British	Empire[5]	with	effect	from	1	May	(slavery	itself	is	abolished	in	British	colonies	in	1833).The	Swansea	and	Mumbles	Railway	in	South	Wales,	at	this	time	known	as	the
Oystermouth	Railway,	becomes	the	first	passenger-carrying	railway	in	the	world.March	29	H.	W.	Olbers	discovers	the	asteroid	Vesta.April	412	Froberg	mutiny:	The	British	suppress	a	mutiny	at	Fort	Ricasoli,	Malta,	by	men	of	the	irregularly-recruited	Froberg	Regiment.April	14	African	Institution	holds	its	first	meeting	in	London;	it	is	intended	to
improve	social	conditions	in	Sierra	Leone.May	22	A	grand	jury	indicts	former	Vice	President	of	the	United	States	Aaron	Burr	for	treason.[6]May	24	Siege	of	Danzig	ends	after	6	weeks	with	Prussian	and	Russian	defenders	capitulating	to	French	forces.May	29	Selim	III,	Ottoman	Emperor	since	1789,	is	deposed	in	favour	of	his	nephew	Mustafa	IV.May
31	Primitive	Methodism	originates	in	an	All	Day	of	Prayer	at	Mow	Cop,	in	the	north	midlands	of	England.[7]June	9	The	Duke	of	Portland	is	chosen	as	Prime	Minister	after	the	United	Kingdom	general	election.June	10	The	Battle	of	Heilsberg	ends	in	a	draw.June	14	Battle	of	Friedland:	Napoleon	decisively	defeats	Bennigsen's	Russian	army.June	22
ChesapeakeLeopard	affair:	British	Royal	Navy	fourth	rate	HMSLeopard	attacks	and	boards	United	States	Navy	frigate	USS	Chesapeake	off	Norfolk,	Virginia,	seeking	deserters.	This	act	of	British	aggression	plays	a	role	in	the	run-up	to	the	War	of	1812.July	5	A	disastrous	British	attack	is	mounted	against	Buenos	Aires,	during	the	second	failed	invasion
of	the	Ro	de	la	Plata.July	79	The	Treaties	of	Tilsit	are	signed	between	France,	Prussia	and	Russia.	Napoleon	and	Russian	Emperor	Alexander	I	ally	together	against	the	British.	The	Prussians	are	forced	to	cede	more	than	half	their	territory,	which	is	formed	into	the	Duchy	of	Warsaw	in	their	former	Polish	lands,	and	the	Kingdom	of	Westphalia	in
western	Germany.	The	Free	City	of	Danzig	is	also	formed	(established	September	9	by	Napoleon).July	13	With	the	death	of	Henry	Benedict	Stuart,	the	last	Stuart	claimant	to	the	throne	of	the	United	Kingdom,	Jacobitism	comes	to	an	effective	end.July	20	Nicphore	Nipce	is	awarded	a	patent	by	Napoleon	Bonaparte	for	the	Pyrolophore,	the	world's	first
internal	combustion	engine,	after	it	successfully	powers	a	boat	upstream	on	the	river	Sane	in	France.August	17	The	North	River	Steamboat,	Robert	Fulton's	first	American	steamboat,	leaves	New	York	City	for	Albany	on	the	Hudson	River,	inaugurating	the	first	commercial	steamboat	service	in	the	world.September	1	Former	U.S.	Vice	President	Aaron
Burr	is	acquitted	of	treason.	He	had	been	accused	of	plotting	to	annex	parts	of	Louisiana	and	Mexico,	to	become	part	of	an	independent	republic.September	27	Battle	of	Copenhagen:	The	British	Royal	Navy	bombards	Copenhagen	with	fire	bombs	and	phosphorus	rockets,	to	prevent	the	Dano-Norwegian	navy	from	surrendering	to	Napoleon;	30%	of	the
city	is	destroyed,	and	2,000	citizens	are	killed.September	7	Robert	Morrison,	the	first	Protestant	missionary	to	China,	arrives	in	Guangzhou	(Canton).[8]September	13	Beethoven's	Mass	in	C	major,	Op.	86,	is	premiered,	commissioned	by	Nikolaus	I,	Prince	Esterhzy,	and	displeasing	him.[9]September	27	Napoleon	purchases	the	Borghese	art	collection,
including	the	Antinous	Mondragone,	and	brings	it	to	Paris.[10]October	9	Prussian	Reform	Movement:	Serfdom	is	abolished	by	the	October	edict.October	13	The	Geological	Society	of	London	is	founded.October	30	El	Escorial	Conspiracy:	Ferdinand,	Prince	of	Asturias	is	arrested	for	conspiring	against	his	father	Charles	IV	of	Spain.November	24	Battle
of	Abrantes,	Portugal:	The	French	under	Jean-Andoche	Junot	take	the	town.November	29	Portuguese	Queen	Maria	I	and	the	Court	embark	at	Lisbon,	bound	for	Brazil.	Rio	de	Janeiro	becomes	the	Portuguese	capital.December	511	Napoleonic	Wars:	Raid	on	Griessie	A	British	Royal	Navy	squadron	attacks	the	Dutch	port	of	Griessie	on	Java	in	the	Dutch
East	Indies,	eliminating	the	last	Dutch	naval	force	in	the	Pacific	and	concluding	the	Java	campaign	of	18061807.[11]December	17	Napoleonic	Wars:	France	issues	the	Milan	Decree	which	confirms	the	Continental	System	(i.e.	no	European	country	is	to	trade	with	the	United	Kingdom).December	22	The	United	States	Congress	passes	the	Embargo	Act,
a	trade	embargo	on	all	foreign	nations.Battle	of	Hingakaka	between	two	factions	of	Mori	people,	the	largest	battle	ever	fought	in	New	Zealand,	and	the	last	fought	there	without	firearms.[12]	In	1807	or	1808	is	fought	the	Battle	of	Moremonui,	first	of	the	Musket	Wars.Robert	E.	LeeJanuary	13	Napoleon	Bonaparte	Buford,	American	general,	railroad
executive	(d.	1883)January	19	Robert	E.	Lee,	American	Confederate	general	(d.	1870)January	28	Robert	McClure,	Irish-born	Arctic	explorer	(d.	1873)February	10	Lajos	Batthyny,	1st	Prime	Minister	of	Hungary	(d.	1849)February	27	Henry	Wadsworth	Longfellow,	American	poet	(d.	1882)[13]March	1	Wilford	Woodruff,	American	religious	leader	(d.
1898)March	14	Josephine	of	Leuchtenberg,	Queen	of	Sweden	and	Norway	(d.	1876)April	2	William	F.	Packer,	American	politician	(d.	1870)April	3	Jane	Digby,	English	adventurer	(d.	1881)April	20	John	Milton,	Governor	of	Florida	(d.	1865)April	26	Charles	Auguste	Frossard,	French	general	(d.	1875)May	28	Louis	Agassiz,	Swiss-born	zoologist	and
geologist	(d.	1873)June	6	Adrien-Franois	Servais,	Belgian	musician	(d.	1866)June	16	John	Westcott,	American	surveyor	and	politician	(d.	1888)Giuseppe	GaribaldiJuly	4	Giuseppe	Garibaldi,	Italian	patriot	(d.	1882)August	11	David	Rice	Atchison,	American	politician	(d.	1886)August	15	Jules	Grvy,	4th	President	of	France	(d.	1891)August	18	Charles
Francis	Adams	Sr.,	American	historical	editor,	politician	and	diplomat	(d.	1886)September	2	Fredrika	Runeberg,	Finnish	writer	(d.	1879)[14]September	7	Henry	Sewell,	1st	Premier	of	New	Zealand	(d.	1879)September	16	John	Lenthall,	American	naval	architect	and	shipbuilder	(d.	1882)October	8	Harriet	Taylor,	English	philosophical	writer	(d.	1858)
[15]October	26	Barbu	Catargiu,	1st	Prime	Minister	of	Romania	(d.	1862)October	29	Aneo	Kraljevi,	Herzegovinian	Catholic	bishop	(d.	1879)October	30	Christopher	Wordsworth,	Bishop	of	Lincoln	(d.	1885)November	16	Eduard	von	Fransecky,	Prussian	general	(d.	1890)December	8	Friedrich	Traugott	Ktzing,	German	pharmacist,	botanist	and
phycologist	(d.	1893)December	17	John	Greenleaf	Whittier,	American	Quaker	poet	and	abolitionist	(d.	1892)Pasquale	PaoliFebruary	1	Sir	Thomas	Troubridge,	1st	Baronet,	British	admiral	(b.	c.1758)February	5	Pasquale	Paoli,	Corsican	patriot,	military	leader	(b.	1725)February	27	Louise	du	Pierry,	French	astronomer	(b.1746)March	10	Jean	Thurel,
French	soldier	(b.	1698)April	4	Jrme	Lalande,	French	astronomer	(b.	1732)April	10	Duchess	Anna	Amalia	of	Brunswick-Wolfenbttel,	regent	of	Weimar	and	Eisenach	(b.	1739)May	10	Jean-Baptiste	Donatien	de	Vimeur,	comte	de	Rochambeau,	French	soldier	(b.	1725)May	13	Eliphalet	Dyer,	American	statesman,	judge	(b.	1721)May	17	John	Gunby,
Maryland	soldier	in	the	American	Revolutionary	War	(b.	1745)May	18	John	Douglas,	Scottish	Anglican	bishop,	man	of	letters	(b.	1721)June	9	Andrew	Sterett,	American	naval	officer	(b.	1778)Angelica	KauffmanJuly	13	Henry	Benedict	Stuart,	Italian-born	cardinal,	Jacobite	claimant	to	the	British	throne	(b.	1725)July	19	Uriah	Tracy,	American	politician
and	congressman	from	Connecticut,	1793	until	1807	(b.	1755)September	14	George	Townshend,	1st	Marquess	Townshend,	British	field	marshal	(b.	1724)October	22	Jean-Franois	Houbigant,	French	perfumer	(b.	1752)November	2	Louis	Auguste	Le	Tonnelier	de	Breteuil,	Prime	Minister	of	King	Louis	XVI	of	France	(b.	1730)November	5	Angelica
Kauffman,	Swiss	painter	(b.	1741)November	8Darejan	Dadiani,	Georgian	queen	consort	(b.	1738)Pierre-Alexandre-Laurent	Forfait,	French	engineer,	hydrographer,	politician,	and	Minister	of	the	Navy	(17991801)	(b.	1752)November	23	Jean-Franois	Rewbell,	French	politician	(b.	1747)November	26	Oliver	Ellsworth,	American	founding	father	and	3rd
Chief	Justice	of	the	United	States	Supreme	Court	(b.	1745)December	19	Friedrich	Melchior,	Baron	von	Grimm,	German	writer	(b.	1723)December	21	John	Newton,	English	cleric,	hymnist	(b.	1725)December	29	Diogo	de	Carvalho	e	Sampayo,	Portuguese	diplomat,	scientist	(b.	1750)^	William	S.	Dudley,	ed.	The	Naval	War	of	1812:	A	Documentary
History	(Naval	Historical	Center,	1985)	p34^	Stephen	Tomkins,	The	Clapham	Sect:	How	Wilberforce's	Circle	Transformed	Britain	(Lion	Books,	2012)	p200^	William	Hodgson,	The	Life	of	Napoleon	Bonaparte,	Once	Emperor	of	the	French,	who	Died	in	Exile,	at	St.	Helena,	After	a	Captivity	of	Six	Years'	Duration	(Orlando	Hodgson,	1841)	p384^
"William	Wilberforce	(17591833)".	Retrieved	January	18,	2021.^	"Abolition	of	the	Slave	Trade	1807".	BBC.	Archived	from	the	original	on	October	11,	2007.	Retrieved	September	11,	2007.^	"The	Aaron	Burr	Treason	Trial"	(PDF).^	Farndale,	W.	E.	(1950).	The	Secret	of	Mow	Cop:	a	new	appraisal	of	the	origins	of	Primitive	Methodism.	London:	Epworth
Press.^	"Sketch	of	the	Canton	Protestant	Mission",	by	Rev.	John	Chalmers,	in	The	Chinese	Recorder	and	Missionary	Journal,	Volume	7	(American	Presbyterian	Mission	Press,	1876)	p174^	Marston,	Nicholas	(2006).	Beethoven:	Mass	in	C	major,	Op.	86	(PDF)	(CD).	Hyperion	Records.	CDH55263.	Retrieved	May	15,	2015.^	Francis	Haskell	and	Nicholas
Penny,	Taste	and	the	Antique:	The	Lure	of	Classical	Sculpture,	1500-1900	(Yale	University	Press,	1982)	p281^	Clowes,	William	Laird	(1997)	[1900].	The	Royal	Navy:	A	History	from	the	Earliest	Times	to	1900.	Vol.V.	Chatham	Publishing.	ISBN1-86176-014-0.^	Anderson,	Atholl	(2022).	"War	is	their	principal	profession:	On	the	frequency	and	causes	of
Maori	warfare	and	migration,	12501850	CE".	In	Clark,	Geoffrey;	Litster,	Mirani	(eds.).	Archaeological	Perspectives	on	Conflict	and	Warfare	in	Australia	and	the	Pacific.	Canberra:	ANU	Press.	p.51.	ISBN978-1-76046-489-9.	Retrieved	March	29,	2025	via	Google	Books.^	Calhoun,	Charles	C	(2004).	Longfellow:	A	Rediscovered	Life.	Boston:	Beacon	Press.
p.5.	ISBN978-0807070260.^	"Fredrika	Runeberg".	Svenska	Littaratursllskapet	i	Finland.	Archived	from	the	original	on	May	6,	2014.	Retrieved	May	14,	2014.^	Robson,	Ann	P.	"Mill	[ne	Hardy;	other	married	name	Taylor],	Harriet".	Oxford	Dictionary	of	National	Biography	(onlineed.).	Oxford	University	Press.	doi:10.1093/ref:odnb/38051.	(Subscription
or	UK	public	library	membership	required.)Retrieved	from	"	3Second-largest	asteroid	of	the	main	asteroid	beltThis	article	is	about	the	asteroid.	For	the	Roman	goddess,	see	Vesta	(mythology).	For	other	uses,	see	Vesta	(disambiguation).4	VestaTrue	color	image	of	Vesta	taken	by	Dawn.	The	massive	Rheasilvia	Crater	dominates	Vesta's	south
pole.DiscoveryDiscoveredbyHeinrich	Wilhelm	OlbersDiscoverydate29	March	1807DesignationsMPCdesignation(4)	VestaPronunciation/vst/[1]Named	afterVestaMinorplanet	categoryMain	belt	(Vesta	family)AdjectivesVestanVestian[a]Symbol	(historically	astronomical,	now	astrological)Orbital	characteristics[6]Epoch	13September
2023(JD2453300.5)Aphelion2.57AU	(384millionkm)Perihelion2.15AU	(322millionkm)Semi-major	axis2.36AU	(353millionkm)Eccentricity0.0894Orbital	period	(sidereal)3.63yr	(1325.86d)Average	orbital	speed19.34km/sMean	anomaly169.4Inclination7.1422	to	ecliptic5.58	to	invariable	plane[7]Longitudeof	ascendingnode103.71Timeof	perihelion26
December	2021[8]Argumentof	perihelion151.66SatellitesNoneEarthMOID1.14AU	(171millionkm)Proper	orbital	elements[9]Proper	semi-major	axis2.36151AUProper	eccentricity0.098758Proper	inclination6.39234Proper	mean	motion99.1888deg/	yrProper	orbital	period3.62944	yr(1325.654	d)Precession	of	perihelion36.8729	(2343	years)arcsec/
yrPrecessionof	the	ascendingnode39.5979	(2182	years)arcsec/	yrPhysical	characteristicsDimensions572.6km	557.2km	446.4km[10]Mean	diameter525.40.2km[10]Flattening0.2204Surface	area(8.660.2)105km2[b][11]Volume7.4970107km3[10]Mass(2.5902710.000058)1020kg[12]Mean	density3.4560.035g/cm3[10]Equatorial	surfacegravity0.22m/s2
(0.022g0)Equatorial	escape	velocity0.36km/sSynodic	rotation	period0.2226d	(5.342h)[6][13]Equatorial	rotationvelocity93.1m/s[c]Axial	tilt29Northpole	right	ascension20h	32m[d]Northpole	declination48[d]Geometric	albedo0.423[15]Temperaturemin:	75K	(198C)max:	250K	(23C)[16]Spectral	typeV[6][17]Apparent	magnitude5.1[18]	to	8.48Absolute
magnitude(H)3.20[6][15]Angular	diameter0.70	to	0.22Vesta	(minor-planet	designation:	4	Vesta)	is	one	of	the	largest	objects	in	the	asteroid	belt,	with	a	mean	diameter	of	525	kilometres	(326mi).[10]	It	was	discovered	by	the	German	astronomer	Heinrich	Wilhelm	Matthias	Olbers	on	29	March	1807[6]	and	is	named	after	Vesta,	the	virgin	goddess	of
home	and	hearth	from	Roman	mythology.[19]Vesta	is	thought	to	be	the	second-largest	asteroid,	both	by	mass	and	by	volume,	after	the	dwarf	planet	Ceres.[20][21][22]	Measurements	give	it	a	nominal	volume	only	slightly	larger	than	that	of	Pallas	(about	5%	greater),	but	it	is	25%	to	30%	more	massive.	It	constitutes	an	estimated	9%	of	the	mass	of	the
asteroid	belt.[23]	Vesta	is	the	only	known	remaining	rocky	protoplanet	of	the	kind	that	formed	the	terrestrial	planets.[24]	Numerous	fragments	of	Vesta	were	ejected	by	collisions	one	and	two	billion	years	ago	that	left	two	enormous	craters	occupying	much	of	Vesta's	southern	hemisphere.[25][26]	Debris	from	these	events	has	fallen	to	Earth	as
howarditeeucritediogenite	(HED)	meteorites,	which	have	been	a	rich	source	of	information	about	Vesta.[27][28][29]Vesta	is	the	brightest	asteroid	visible	from	Earth.	It	is	regularly	as	bright	as	magnitude	5.1,[18]	at	which	times	it	is	faintly	visible	to	the	naked	eye.	Its	maximum	distance	from	the	Sun	is	slightly	greater	than	the	minimum	distance	of
Ceres	from	the	Sun,[e]	although	its	orbit	lies	entirely	within	that	of	Ceres.[30]NASA's	Dawn	spacecraft	entered	orbit	around	Vesta	on	16	July	2011	for	a	one-year	exploration	and	left	the	orbit	of	Vesta	on	5	September	2012[31]	en	route	to	its	final	destination,	Ceres.	Researchers	continue	to	examine	data	collected	by	Dawn	for	additional	insights	into
the	formation	and	history	of	Vesta.[32][33]Vesta,	Ceres,	and	the	Moon	with	sizes	shown	to	scaleHeinrich	Olbers	discovered	Pallas	in	1802,	the	year	after	the	discovery	of	Ceres.	He	proposed	that	the	two	objects	were	the	remnants	of	a	destroyed	planet.	He	sent	a	letter	with	his	proposal	to	the	British	astronomer	William	Herschel,	suggesting	that	a
search	near	the	locations	where	the	orbits	of	Ceres	and	Pallas	intersected	might	reveal	more	fragments.	These	orbital	intersections	were	located	in	the	constellations	of	Cetus	and	Virgo.[34]	Olbers	commenced	his	search	in	1802,	and	on	29	March	1807	he	discovered	Vesta	in	the	constellation	Virgoa	coincidence,	because	Ceres,	Pallas,	and	Vesta	are
not	fragments	of	a	larger	body.	Because	the	asteroid	Juno	had	been	discovered	in	1804,	this	made	Vesta	the	fourth	object	to	be	identified	in	the	region	that	is	now	known	as	the	asteroid	belt.	The	discovery	was	announced	in	a	letter	addressed	to	German	astronomer	Johann	H.	Schrter	dated	31	March.[35]	Because	Olbers	already	had	credit	for
discovering	a	planet	(Pallas;	at	the	time,	the	asteroids	were	considered	to	be	planets),	he	gave	the	honor	of	naming	his	new	discovery	to	German	mathematician	Carl	Friedrich	Gauss,	whose	orbital	calculations	had	enabled	astronomers	to	confirm	the	existence	of	Ceres,	the	first	asteroid,	and	who	had	computed	the	orbit	of	the	new	planet	in	the
remarkably	short	time	of	10	hours.[36][37]	Gauss	decided	on	the	Roman	virgin	goddess	of	home	and	hearth,	Vesta.[38]Vesta	was	the	fourth	asteroid	to	be	discovered,	hence	the	number4	in	its	formal	designation.	The	name	Vesta,	or	national	variants	thereof,	is	in	international	use	with	two	exceptions:	Greece	and	China.	In	Greek,	the	name	adopted
was	the	Hellenic	equivalent	of	Vesta,	Hestia	(4);	in	English,	that	name	is	used	for	46	Hestia	(Greeks	use	the	name	"Hestia"	for	both,	with	the	minor-planet	numbers	used	for	disambiguation).	In	Chinese,	Vesta	is	called	the	'hearth-god(dess)	star',	Zoshnxng,	naming	the	asteroid	for	Vesta's	role,	similar	to	the	Chinese	names	of	Uranus,	Neptune,	and
Pluto.[f]Upon	its	discovery,	Vesta	was,	like	Ceres,	Pallas,	and	Juno	before	it,	classified	as	a	planet	and	given	a	planetary	symbol.	The	symbol	represented	the	altar	of	Vesta	with	its	sacred	fire	and	was	designed	by	Gauss.[39][40]	In	Gauss's	conception,	now	obsolete,	this	was	drawn	.	His	form	is	in	the	pipeline	for	Unicode	17.0	as	U+1F777	.[41][42]
[g]The	asteroid	symbols	were	gradually	retired	from	astronomical	use	after	1852,	but	the	symbols	for	the	first	four	asteroids	were	resurrected	for	astrology	in	the	1970s.	The	abbreviated	modern	astrological	variant	of	the	Vesta	symbol	is	(U+26B6).[41][h]After	the	discovery	of	Vesta,	no	further	objects	were	discovered	for	38years,	and	during	this
time	the	Solar	System	was	thought	to	have	eleven	planets.[47]	However,	in	1845,	new	asteroids	started	being	discovered	at	a	rapid	pace,	and	by	1851	there	were	fifteen,	each	with	its	own	symbol,	in	addition	to	the	eight	major	planets	(Neptune	had	been	discovered	in	1846).	It	soon	became	clear	that	it	would	be	impractical	to	continue	inventing	new
planetary	symbols	indefinitely,	and	some	of	the	existing	ones	proved	difficult	to	draw	quickly.	That	year,	the	problem	was	addressed	by	Benjamin	Apthorp	Gould,	who	suggested	numbering	asteroids	in	their	order	of	discovery,	and	placing	this	number	in	a	disk	(circle)	as	the	generic	symbol	of	an	asteroid.	Thus,	the	fourth	asteroid,	Vesta,	acquired	the
generic	symbol	.	This	was	soon	coupled	with	the	name	into	an	official	numbername	designation,	Vesta,	as	the	number	of	minor	planets	increased.	By	1858,	the	circle	had	been	simplified	to	parentheses,	(4)	Vesta,	which	were	easier	to	typeset.	Other	punctuation,	such	as	4)	Vesta	and	4,	Vesta,	was	also	briefly	used,	but	had	more	or	less	completely	died
out	by	1949.[48]SPHERE	image	is	shown	on	the	left,	with	a	synthetic	view	derived	from	Dawn	images	shown	on	the	right	for	comparison.[49]Photometric	observations	of	Vesta	were	made	at	the	Harvard	College	Observatory	in	18801882	and	at	the	Observatoire	de	Toulouse	in	1909.	These	and	other	observations	allowed	the	rotation	rate	of	Vesta	to
be	determined	by	the	1950s.	However,	the	early	estimates	of	the	rotation	rate	came	into	question	because	the	light	curve	included	variations	in	both	shape	and	albedo.[50]Early	estimates	of	the	diameter	of	Vesta	ranged	from	383	kilometres	(238mi)	in	1825,	to	444km	(276mi).	E.C.	Pickering	produced	an	estimated	diameter	of	51317km	(31911mi)	in
1879,	which	is	close	to	the	modern	value	for	the	mean	diameter,	but	the	subsequent	estimates	ranged	from	a	low	of	390km	(242mi)	up	to	a	high	of	602km	(374mi)	during	the	next	century.	The	measured	estimates	were	based	on	photometry.	In	1989,	speckle	interferometry	was	used	to	measure	a	dimension	that	varied	between	498	and	548km	(309
and	341mi)	during	the	rotational	period.[51]	In	1991,	an	occultation	of	the	star	SAO	93228	by	Vesta	was	observed	from	multiple	locations	in	the	eastern	United	States	and	Canada.	Based	on	observations	from	14	different	sites,	the	best	fit	to	the	data	was	an	elliptical	profile	with	dimensions	of	about	550km	462km	(342mi	287mi).[52]	Dawn	confirmed
this	measurement.[i]	These	measurements	will	help	determine	the	thermal	history,	size	of	the	core,	role	of	water	in	asteroid	evolution	and	what	meteorites	found	on	Earth	come	from	these	bodies,	with	the	ultimate	goal	of	understanding	the	conditions	and	processes	present	at	the	solar	system's	earliest	epoch	and	the	role	of	water	content	and	size	in
planetary	evolution.[53]Vesta	became	the	first	asteroid	to	have	its	mass	determined.	Every	18	years,	the	asteroid	197	Arete	approaches	within	0.04AU	of	Vesta.	In	1966,	based	upon	observations	of	Vesta's	gravitational	perturbations	of	Arete,	Hans	G.	Hertz	estimated	the	mass	of	Vesta	at	(1.200.08)1010M	(solar	masses).[54]	More	refined	estimates
followed,	and	in	2001	the	perturbations	of	17	Thetis	were	used	to	calculate	the	mass	of	Vesta	to	be	(1.310.02)1010M.[55]	Dawn	determined	it	to	be	1.30291010M.Vesta	orbits	the	Sun	between	Mars	and	Jupiter,	within	the	asteroid	belt,	with	a	period	of	3.6	Earth	years,[6]	specifically	in	the	inner	asteroid	belt,	interior	to	the	Kirkwood	gap	at	2.50AU.	Its
orbit	is	moderately	inclined	(i	=	7.1,	compared	to	7	for	Mercury	and	17	for	Pluto)	and	moderately	eccentric	(e	=	0.09,	about	the	same	as	for	Mars).[6]True	orbital	resonances	between	asteroids	are	considered	unlikely.	Because	of	their	small	masses	relative	to	their	large	separations,	such	relationships	should	be	very	rare.[56]	Nevertheless,	Vesta	is
able	to	capture	other	asteroids	into	temporary	1:1	resonant	orbital	relationships	(for	periods	up	to	2	million	years	or	more)	and	about	forty	such	objects	have	been	identified.[57]	Decameter-sized	objects	detected	in	the	vicinity	of	Vesta	by	Dawn	may	be	such	quasi-satellites	rather	than	proper	satellites.[57]Olbers	Regio	(dark	area)	defines	the	prime
meridian	in	the	IAU	coordinate	system.	It	is	shown	here	in	a	Hubble	shot	of	Vesta,	because	it	is	not	visible	in	the	more	detailed	Dawn	images.Claudia	crater	(indicated	by	the	arrow	at	the	bottom	of	the	closeup	image	at	right)	defines	the	prime	meridian	in	the	Dawn/NASA	coordinate	system.Vesta's	rotation	is	relatively	fast	for	an	asteroid	(5.342h)	and
prograde,	with	the	north	pole	pointing	in	the	direction	of	right	ascension	20h32min,	declination	+48	(in	the	constellation	Cygnus)	with	an	uncertainty	of	about	10.	This	gives	an	axial	tilt	of	29.[58]Two	longitudinal	coordinate	systems	are	used	for	Vesta,	with	prime	meridians	separated	by	150.	The	IAU	established	a	coordinate	system	in	1997	based	on
Hubble	photos,	with	the	prime	meridian	running	through	the	center	of	Olbers	Regio,	a	dark	feature	200km	across.	When	Dawn	arrived	at	Vesta,	mission	scientists	found	that	the	location	of	the	pole	assumed	by	the	IAU	was	off	by	10,	so	that	the	IAU	coordinate	system	drifted	across	the	surface	of	Vesta	at	0.06	per	year,	and	also	that	Olbers	Regio	was
not	discernible	from	up	close,	and	so	was	not	adequate	to	define	the	prime	meridian	with	the	precision	they	needed.	They	corrected	the	pole,	but	also	established	a	new	prime	meridian	4	from	the	center	of	Claudia,	a	sharply	defined	crater	700	metres	across,	which	they	say	results	in	a	more	logical	set	of	mapping	quadrangles.[59]	All	NASA
publications,	including	images	and	maps	of	Vesta,	use	the	Claudian	meridian,	which	is	unacceptable	to	the	IAU.	The	IAU	Working	Group	on	Cartographic	Coordinates	and	Rotational	Elements	recommended	a	coordinate	system,	correcting	the	pole	but	rotating	the	Claudian	longitude	by	150	to	coincide	with	Olbers	Regio.[60]	It	was	accepted	by	the
IAU,	although	it	disrupts	the	maps	prepared	by	the	Dawn	team,	which	had	been	positioned	so	they	would	not	bisect	any	major	surface	features.[59][61]Relative	sizes	of	the	four	largest	asteroids.	Vesta	is	second	from	left.This	graph	was	using	the	legacy	Graph	extension,	which	is	no	longer	supported.	It	needs	to	be	converted	to	the	new	Chart
extension.The	mass	of	4	Vesta	(blue)	compared	to	other	large	asteroids:	1	Ceres,	2	Pallas,	10	Hygiea,	704	Interamnia,	15	Eunomia	and	the	remainder	of	the	Main	Belt.	The	unit	of	mass	is1018	kg.	Other	objects	in	the	Solar	system	with	well-defined	masses	within	a	factor	of	2	of	Vesta's	mass	are	Varda,	Gknhmdm,	and	Salacia	(245,	136,	and	4921018
kg,	respectively).	No	moons	are	in	this	range:	the	closest,	Tethys	(Saturn	III)	and	Enceladus	(Saturn	II),	are	over	twice	and	less	than	half	of	Vesta's	mass.Vesta	is	the	second	most	massive	body	in	the	asteroid	belt,	although	it	is	only	28%	as	massive	as	Ceres,	the	most	massive	body.[62][23]	Vesta	is,	however,	the	most	massive	body	that	formed	in	the
asteroid	belt,	as	Ceres	is	believed	to	have	formed	between	Jupiter	and	Saturn.	Vesta's	density	is	lower	than	those	of	the	four	terrestrial	planets	but	is	higher	than	those	of	most	asteroids,	as	well	as	all	of	the	moons	in	the	Solar	System	except	Io.	Vesta's	surface	area	is	about	the	same	as	the	land	area	of	Pakistan,	Venezuela,	Tanzania,	or	Nigeria;	slightly
under	900,000km2	(350,000sqmi;	90millionha;	220million	acres).	It	has	an	only	partially	differentiated	interior.[63]	Vesta	is	only	slightly	larger	(525.40.2km[10])	than	2	Pallas	(5123km)	in	mean	diameter,[64]	but	is	about	25%	more	massive.Vesta's	shape	is	close	to	a	gravitationally	relaxed	oblate	spheroid,[58]	but	the	large	concavity	and	protrusion	at
the	southern	pole	(see	'Surface	features'	below)	combined	with	a	mass	less	than	51020kg	precluded	Vesta	from	automatically	being	considered	a	dwarf	planet	under	International	Astronomical	Union	(IAU)	Resolution	XXVI	5.[65]	A	2012	analysis	of	Vesta's	shape[66]	and	gravity	field	using	data	gathered	by	the	Dawn	spacecraft	has	shown	that	Vesta	is
currently	not	in	hydrostatic	equilibrium.[10][67]Temperatures	on	the	surface	have	been	estimated	to	lie	between	about	20C	(253K)	with	the	Sun	overhead,	dropping	to	about	190C	(83.1K)	at	the	winter	pole.	Typical	daytime	and	nighttime	temperatures	are	60C	(213K)	and	130C	(143K),	respectively.	This	estimate	is	for	6	May	1996,	very	close	to
perihelion,	although	details	vary	somewhat	with	the	seasons.[16]Further	information:	List	of	geological	features	on	VestaBefore	the	arrival	of	the	Dawn	spacecraft,	some	Vestan	surface	features	had	already	been	resolved	using	the	Hubble	Space	Telescope	and	ground-based	telescopes	(e.g.,	the	Keck	Observatory).[68]	The	arrival	of	Dawn	in	July	2011
revealed	the	complex	surface	of	Vesta	in	detail.[69]Geologic	map	of	Vesta	(Mollweide	projection).[70]	The	most	ancient	and	heavily	cratered	regions	are	brown;	areas	modified	by	the	Veneneia	and	Rheasilvia	impacts	are	purple	(the	Saturnalia	Fossae	Formation,	in	the	north)[71]	and	light	cyan	(the	Divalia	Fossae	Formation,	equatorial),[70]
respectively;	the	Rheasilvia	impact	basin	interior	(in	the	south)	is	dark	blue,	and	neighboring	areas	of	Rheasilvia	ejecta	(including	an	area	within	Veneneia)	are	light	purple-blue;[72][73]	areas	modified	by	more	recent	impacts	or	mass	wasting	are	yellow/orange	or	green,	respectively.Main	articles:	Rheasilvia	and	VeneneiaNorthern	(left)	and	southern
(right)	hemispheres.	The	"Snowman"	craters	are	at	the	top	of	the	left	image;	Rheasilvia	and	Veneneia	(green	and	blue)	dominate	the	right.	Parallel	troughs	are	seen	in	both.	Colors	of	the	two	hemispheres	are	not	to	scale,[j]	and	the	equatorial	region	is	not	shown.South	pole	of	Vesta,	showing	the	extent	of	Rheasilvia	crater.The	most	prominent	of	these
surface	features	are	two	enormous	impact	basins,	the	500-kilometre-wide	(311mi)	Rheasilvia,	centered	near	the	south	pole;	and	the	400-kilometre-wide	(249mi)	Veneneia.	The	Rheasilvia	impact	basin	is	younger	and	overlies	the	Veneneia.[74]	The	Dawn	science	team	named	the	younger,	more	prominent	crater	Rheasilvia,	after	the	mother	of	Romulus
and	Remus	and	a	mythical	vestal	virgin.[75]	Its	width	is	95%	of	the	mean	diameter	of	Vesta.	The	crater	is	about	19km	(12mi)	deep.	A	central	peak	rises	23km	(14mi)	above	the	lowest	measured	part	of	the	crater	floor	and	the	highest	measured	part	of	the	crater	rim	is	31km	(19mi)	above	the	crater	floor	low	point.	It	is	estimated	that	the	impact
responsible	excavated	about	1%	of	the	volume	of	Vesta,	and	it	is	likely	that	the	Vesta	family	and	V-type	asteroids	are	the	products	of	this	collision.	If	this	is	the	case,	then	the	fact	that	10km	(6mi)	fragments	have	survived	bombardment	until	the	present	indicates	that	the	crater	is	at	most	only	about	1billion	years	old.[76]	It	would	also	be	the	site	of
origin	of	the	HED	meteorites.	All	the	known	V-type	asteroids	taken	together	account	for	only	about	6%	of	the	ejected	volume,	with	the	rest	presumably	either	in	small	fragments,	ejected	by	approaching	the	3:1Kirkwood	gap,	or	perturbed	away	by	the	Yarkovsky	effect	or	radiation	pressure.	Spectroscopic	analyses	of	the	Hubble	images	have	shown	that
this	crater	has	penetrated	deep	through	several	distinct	layers	of	the	crust,	and	possibly	into	the	mantle,	as	indicated	by	spectral	signatures	of	olivine.[58]Subsequent	analysis	of	data	from	the	Dawn	mission	provided	much	greater	detail	on	Rheasilvia's	structure	and	composition,	confirming	it	as	one	of	the	largest	impact	structures	known	relative	to
its	parent	body	size.[74]	The	impact	clearly	modified	the	pre-existing	very	large,	Veneneia	structure,	indicating	Rheasilvia's	younger	age.[74]	Rheasilvia's	size	makes	Vesta's	southern	topography	unique,	creating	a	flattened	southern	hemisphere	and	contributing	significantly	to	the	asteroid's	overall	oblate	shape.[69]	Rheasilvia's	~22km	(14mi)	central
peak	stands	as	one	of	the	tallest	mountains	identified	in	the	Solar	System.[74]	Its	base	width	of	roughly	180km	(110mi)	and	complex	morphology	distinguishes	it	from	the	simpler	central	peaks	seen	in	smaller	craters.[77]	Numerical	modeling	indicates	that	such	a	large	central	structure	within	a	~505km	(314mi)	diameter	basin	requires	formation	on	a
differentiated	body	with	significant	gravity.	Scaling	laws	for	craters	on	smaller	asteroids	fail	to	predict	such	a	feature;	instead,	impact	dynamics	involving	transient	crater	collapse	and	rebound	of	the	underlying	material	(potentially	upper	mantle)	are	needed	to	explain	its	formation.[77]	Hydrocode	simulations	suggest	the	impactor	responsible	was
likely	6070km	(3743mi)	across,	impacting	at	roughly	5.4	km/s.[78]	Models	of	impact	angle	(around	30-45	degrees	from	vertical)	better	match	the	detailed	morphology	of	the	basin	and	its	prominent	peak.[77]	Crater	density	measurements	on	Rheasilvia's	relatively	unmodified	floor	materials	and	surrounding	ejecta	deposits,	calibrated	using	standard
lunar	chronology	functions	adapted	for	Vesta's	location,	place	the	impact	event	at	approximately	1	billion	years	ago.[79][70]	This	age	makes	Rheasilvia	a	relatively	young	feature	on	a	protoplanetary	body	formed	early	in	Solar	System	history.	The	estimated	excavation	of	~1%	of	Vesta's	volume[74]	provides	a	direct	link	to	the	Vesta	family	of	asteroids
(Vestoids)	and	the	HED	meteorites.	Since	Vesta's	spectral	signature	matches	that	of	the	Vestoids	and	HEDs,	this	strongly	indicates	they	are	fragments	ejected	from	Vesta	most	likely	during	the	Rheasilvia	impact.[27][79]	The	Dawn	mission's	VIR	instrument	helped	to	confirm	the	basin's	deep	excavation	and	compositional	diversity.	VIR	mapping
revealed	spectral	variations	across	the	basin	consistent	with	the	mixing	of	different	crustal	layers	expected	in	the	HED	meteorites.	Signatures	matching	eucrites	(shallow	crustal	basalts)	and	diogenites	(deeper	crustal	orthopyroxenites)	were	identified,	which	usually	correlate	with	specific	morphological	features	like	crater	walls	or	slump	blocks.[80]
[27]	The	confirmed	signature	of	olivine-rich	material,	which	were	first	hinted	at	by	Hubble	observations	is	strongest	on	the	flanks	of	the	central	peak	and	in	specific	patches	along	the	basin	rim	and	walls,	suggesting	it	is	not	uniformly	distributed	but	rather	exposed	in	distinct	outcrops.[81][80]	As	the	dominant	mineral	expected	in	Vesta's	mantle
beneath	the	HED-like	crust,[10]	the	presence	of	olivine	indicates	the	Rheasilvia	impact	penetrated	Vesta's	entire	crust	(~2040km	(1225mi)	thick	in	the	region)	and	excavated	material	from	the	upper	mantle.[81]	Furthermore,	the	global	stresses	resulting	from	this	massive	impact	are	considered	the	likely	trigger	for	the	formation	of	the	large	trough
systems,	like	Divalia	Fossa,	that	encircle	Vesta's	equatorial	regions.[82][69]The	crater	AeliaFeralia	Planitia,	an	old,	degraded	impact	basin	or	impact	basin	complex	near	Vesta's	equator	(green	and	blue).	It	is	270km	(168mi)	across	and	predates	Rheasilvia	(green	at	bottom)Several	old,	degraded	craters	approach	Rheasilvia	and	Veneneia	in	size,
although	none	are	quite	so	large.	They	include	Feralia	Planitia,	shown	at	right,	which	is	270km	(168mi)	across.[83]	More-recent,	sharper	craters	range	up	to	158km	(98mi)	Varronilla	and	196km	(122mi)	Postumia.[84]Dust	fills	up	some	craters,	creating	so-called	dust	ponds.	They	are	a	phenomenon	where	pockets	of	dust	are	seen	in	celestial	bodies
without	a	significant	atmosphere.	These	are	smooth	deposits	of	dust	accumulated	in	depressions	on	the	surface	of	the	body	(like	craters),	contrasting	from	the	Rocky	terrain	around	them.[85]	On	the	surface	of	Vesta,	we	have	identified	both	type1	(formed	from	impact	melt)	and	type2	(electrostatically	made)	dust	ponds	within	030N/S,	that	is,
Equatorial	region.	10craters	have	been	identified	with	such	formations.[86]The	"snowman	craters"	are	a	group	of	three	adjacent	craters	in	Vesta's	northern	hemisphere.	Their	official	names,	from	largest	to	smallest	(west	to	east),	are	Marcia,	Calpurnia,	and	Minucia.	Marcia	is	the	youngest	and	cross-cuts	Calpurnia.	Minucia	is	the	oldest.
[70]"Snowman"	craters	by	Dawn	from	5,200km	(3,200mi)	in	2011Detailed	image	of	the	"Snowman"	cratersThe	majority	of	the	equatorial	region	of	Vesta	is	sculpted	by	a	series	of	parallel	troughs	designated	Divalia	Fossae;	its	longest	trough	is	1020	kilometres	(6.212.4mi)	wide	and	465	kilometres	(289mi)	long.	Despite	the	fact	that	Vesta	is	a	one-
seventh	the	size	of	the	Moon,	Divalia	Fossae	dwarfs	the	Grand	Canyon.	A	second	series,	inclined	to	the	equator,	is	found	further	north.	This	northern	trough	system	is	named	Saturnalia	Fossae,	with	its	largest	trough	being	roughly	40km	(25mi)	wide	and	over	370km	(230mi)	long.	These	troughs	are	thought	to	be	large-scale	graben	resulting	from	the
impacts	that	created	Rheasilvia	and	Veneneia	craters,	respectively.	They	are	some	of	the	longest	chasms	in	the	Solar	System,	nearly	as	long	as	Ithaca	Chasma	on	Tethys.	The	troughs	may	be	graben	that	formed	after	another	asteroid	collided	with	Vesta,	a	process	that	can	happen	only	in	a	body	that	is	differentiated,[82]	which	Vesta	may	not	fully	be.
Alternatively,	it	is	proposed	that	the	troughs	may	be	radial	sculptures	created	by	secondary	cratering	from	Rheasilvia.[87]A	section	of	Divalia	Fossae,	with	parallel	troughs	to	the	north	and	southA	computer-generated	view	of	a	portion	of	Divalia	FossaeCompositional	information	from	the	visible	and	infrared	spectrometer	(VIR),	gamma-ray	and	neutron
detector	(GRaND),	and	framing	camera	(FC),	all	indicate	that	the	majority	of	the	surface	composition	of	Vesta	is	consistent	with	the	composition	of	the	howardite,	eucrite,	and	diogenite	meteorites.[88][89][90]	The	Rheasilvia	region	is	richest	in	diogenite,	consistent	with	the	Rheasilvia-forming	impact	excavating	material	from	deeper	within	Vesta.	The
presence	of	olivine	within	the	Rheasilvia	region	would	also	be	consistent	with	excavation	of	mantle	material.	However,	olivine	has	only	been	detected	in	localized	regions	of	the	northern	hemisphere,	not	within	Rheasilvia.[32]	The	origin	of	this	olivine	is	currently	unclear.	Though	olivine	was	expected	by	astronomers	to	have	originated	from	Vesta's
mantle	prior	to	the	arrival	of	the	Dawn	orbiter,	the	lack	of	olivine	within	the	Rheasilvia	and	Veneneia	impact	basins	complicates	this	view.	Both	impact	basins	excavated	Vestian	material	down	to	60100km,	far	deeper	than	the	expected	thickness	of	~3040km	for	Vesta's	crust.	Vesta's	crust	may	be	far	thicker	than	expected	or	the	violent	impact	events

that	created	Rheasilvia	and	Veneneia	may	have	mixed	material	enough	to	obscure	olivine	from	observations.	Alternatively,	Dawn	observations	of	olivine	could	instead	be	due	to	delivery	by	olivine-rich	impactors,	unrelated	to	Vesta's	internal	structure.[91]Pitted	terrain	has	been	observed	in	four	craters	on	Vesta:	Marcia,	Cornelia,	Numisia	and	Licinia.
[92]	The	formation	of	the	pitted	terrain	is	proposed	to	be	degassing	of	impact-heated	volatile-bearing	material.	Along	with	the	pitted	terrain,	curvilinear	gullies	are	found	in	Marcia	and	Cornelia	craters.	The	curvilinear	gullies	end	in	lobate	deposits,	which	are	sometimes	covered	by	pitted	terrain,	and	are	proposed	to	form	by	the	transient	flow	of	liquid
water	after	buried	deposits	of	ice	were	melted	by	the	heat	of	the	impacts.[71]	Hydrated	materials	have	also	been	detected,	many	of	which	are	associated	with	areas	of	dark	material.[93]	Consequently,	dark	material	is	thought	to	be	largely	composed	of	carbonaceous	chondrite,	which	was	deposited	on	the	surface	by	impacts.	Carbonaceous	chondrites
are	comparatively	rich	in	mineralogically	bound	OH.[90]Cut-away	schematic	of	Vestan	core,	mantle,	and	crustEucrite	meteoriteA	large	collection	of	potential	samples	from	Vesta	is	accessible	to	scientists,	in	the	form	of	over	1200HED	meteorites	(Vestan	achondrites),	giving	insight	into	Vesta's	geologic	history	and	structure.	NASA	Infrared	Telescope
Facility	(NASA	IRTF)	studies	of	asteroid	(237442)	1999	TA10	suggest	that	it	originated	from	deeper	within	Vesta	than	the	HED	meteorites.[94]Vesta	is	thought	to	consist	of	a	metallic	ironnickel	core,	variously	estimated	to	be	90km	(56mi)[63]	to	220km	(140mi)[10]	in	diameter,	an	overlying	rocky	olivine	mantle,	with	a	surface	crust	of	similar
composition	to	HED	meteorites.From	the	first	appearance	of	calciumaluminium-rich	inclusions	(the	first	solid	matter	in	the	Solar	System,	forming	about	4.567billion	years	ago),	a	likely	time	line	is	as	follows:[95][96][97][98][99]Timeline	of	the	evolution	of	Vesta23million	yearsAccretion	completed45million	yearsComplete	or	almost	complete	melting
due	to	radioactive	decay	of	26Al,	leading	to	separation	of	the	metal	core67million	yearsProgressive	crystallization	of	a	convecting	molten	mantle.	Convection	stopped	when	about	80%	of	the	material	had	crystallizedExtrusion	of	the	remaining	molten	material	to	form	the	crust,	either	as	basaltic	lavas	in	progressive	eruptions,	or	possibly	forming	a
short-lived	magma	ocean.The	deeper	layers	of	the	crust	crystallize	to	form	plutonic	rocks,	whereas	older	basalts	are	metamorphosed	due	to	the	pressure	of	newer	surface	layers.Slow	cooling	of	the	interiorVesta	is	the	only	known	intact	asteroid	that	has	been	resurfaced	in	this	manner.	Because	of	this,	some	scientists	refer	to	Vesta	as	a	protoplanet.
[100]Composition	of	the	Vestan	crust	(by	depth)[101]A	lithified	regolith,	the	source	of	howardites	and	brecciated	eucrites.Basaltic	lava	flows,	a	source	of	non-cumulate	eucrites.Plutonic	rocks	consisting	of	pyroxene,	pigeonite	and	plagioclase,	the	source	of	cumulate	eucrites.Plutonic	rocks	rich	in	orthopyroxene	with	large	grain	sizes,	the	source	of
diogenites.On	the	basis	of	the	sizes	of	V-type	asteroids	(thought	to	be	pieces	of	Vesta's	crust	ejected	during	large	impacts),	and	the	depth	of	Rheasilvia	crater	(see	below),	the	crust	is	thought	to	be	roughly	10	kilometres	(6mi)	thick.[102]Findings	from	the	Dawn	spacecraft	have	found	evidence	that	the	troughs	that	wrap	around	Vesta	could	be	graben
formed	by	impact-induced	faulting	(see	Troughs	section	above),	meaning	that	Vesta	has	more	complex	geology	than	other	asteroids.	The	impacts	that	created	the	Rheasilvia	and	Veneneia	craters	occurred	when	Vesta	was	no	longer	warm	and	plastic	enough	to	return	to	an	equilibrium	shape,	distorting	its	once	rounded	shape	and	prohibiting	it	from
being	classified	as	a	dwarf	planet	today.[citation	needed]Vesta's	surface	is	covered	by	regolith	distinct	from	that	found	on	the	Moon	or	asteroids	such	as	Itokawa.	This	is	because	space	weathering	acts	differently.	Vesta's	surface	shows	no	significant	trace	of	nanophase	iron	because	the	impact	speeds	on	Vesta	are	too	low	to	make	rock	melting	and
vaporization	an	appreciable	process.	Instead,	regolith	evolution	is	dominated	by	brecciation	and	subsequent	mixing	of	bright	and	dark	components.[103]	The	dark	component	is	probably	due	to	the	infall	of	carbonaceous	material,	whereas	the	bright	component	is	the	original	Vesta	basaltic	soil.[104]Some	small	Solar	System	bodies	are	suspected	to	be
fragments	of	Vesta	caused	by	impacts.	The	Vestian	asteroids	and	HED	meteorites	are	examples.	The	V-type	asteroid	1929	Kollaa	has	been	determined	to	have	a	composition	akin	to	cumulate	eucrite	meteorites,	indicating	its	origin	deep	within	Vesta's	crust.[28]Vesta	is	currently	one	of	only	eight	identified	Solar	System	bodies	of	which	we	have
physical	samples,	coming	from	a	number	of	meteorites	suspected	to	be	Vestan	fragments.	It	is	estimated	that	1	out	of	16	meteorites	originated	from	Vesta.[105]	The	other	identified	Solar	System	samples	are	from	Earth	itself,	meteorites	from	Mars,	meteorites	from	the	Moon,	and	samples	returned	from	the	Moon,	the	comet	Wild	2,	and	the	asteroids
25143	Itokawa,	162173	Ryugu,	and	101955	Bennu.[29][k]Animation	of	Dawn's	trajectory	from	27	September	2007	to	5	October	2018	Dawn	Earth	Mars	4	Vesta	1	CeresFirst	image	of	asteroids	(Ceres	and	Vesta)	taken	from	Mars.	The	image	was	made	by	the	Curiosity	rover	on	20	April	2014.Animation	of	Dawn's	trajectory	around	4	Vesta	from	15	July
2011	to	10	September	2012	Dawn	4	VestaIn	1981,	a	proposal	for	an	asteroid	mission	was	submitted	to	the	European	Space	Agency	(ESA).	Named	the	Asteroidal	Gravity	Optical	and	Radar	Analysis	(AGORA),	this	spacecraft	was	to	launch	some	time	in	19901994	and	perform	two	flybys	of	large	asteroids.	The	preferred	target	for	this	mission	was	Vesta.
AGORA	would	reach	the	asteroid	belt	either	by	a	gravitational	slingshot	trajectory	past	Mars	or	by	means	of	a	small	ion	engine.	However,	the	proposal	was	refused	by	the	ESA.	A	joint	NASAESA	asteroid	mission	was	then	drawn	up	for	a	Multiple	Asteroid	Orbiter	with	Solar	Electric	Propulsion	(MAOSEP),	with	one	of	the	mission	profiles	including	an
orbit	of	Vesta.	NASA	indicated	they	were	not	interested	in	an	asteroid	mission.	Instead,	the	ESA	set	up	a	technological	study	of	a	spacecraft	with	an	ion	drive.	Other	missions	to	the	asteroid	belt	were	proposed	in	the	1980s	by	France,	Germany,	Italy	and	the	United	States,	but	none	were	approved.[106]	Exploration	of	Vesta	by	fly-by	and	impacting
penetrator	was	the	second	main	target	of	the	first	plan	of	the	multi-aimed	Soviet	Vesta	mission,	developed	in	cooperation	with	European	countries	for	realisation	in	19911994	but	canceled	due	to	the	dissolution	of	the	Soviet	Union.Artist's	conception	of	Dawn	orbiting	VestaIn	the	early	1990s,	NASA	initiated	the	Discovery	Program,	which	was	intended
to	be	a	series	of	low-cost	scientific	missions.	In	1996,	the	program's	study	team	recommended	a	mission	to	explore	the	asteroid	belt	using	a	spacecraft	with	an	ion	engine	as	a	high	priority.	Funding	for	this	program	remained	problematic	for	several	years,	but	by	2004	the	Dawn	vehicle	had	passed	its	critical	design	review[107]	and	construction
proceeded.[citation	needed]It	launched	on	27	September	2007	as	the	first	space	mission	to	Vesta.	On	3	May	2011,	Dawn	acquired	its	first	targeting	image	1.2million	kilometres	(0.7510^6mi)	from	Vesta.[108]	On	16	July	2011,	NASA	confirmed	that	it	received	telemetry	from	Dawn	indicating	that	the	spacecraft	successfully	entered	Vesta's	orbit.[109]
It	was	scheduled	to	orbit	Vesta	for	one	year,	until	July	2012.[110]	Dawn's	arrival	coincided	with	late	summer	in	the	southern	hemisphere	of	Vesta,	with	the	large	crater	at	Vesta's	south	pole	(Rheasilvia)	in	sunlight.	Because	a	season	on	Vesta	lasts	eleven	months,	the	northern	hemisphere,	including	anticipated	compression	fractures	opposite	the	crater,
would	become	visible	to	Dawn's	cameras	before	it	left	orbit.[111]	Dawn	left	orbit	around	Vesta	on	4	September	2012	11:26	p.m.	PDT	to	travel	to	Ceres.[112]NASA/DLR	released	imagery	and	summary	information	from	a	survey	orbit,	two	high-altitude	orbits	(6070m/pixel)	and	a	low-altitude	mapping	orbit	(20m/pixel),	including	digital	terrain	models,
videos	and	atlases.[113][114][115][116][117][118]	Scientists	also	used	Dawn	to	calculate	Vesta's	precise	mass	and	gravity	field.	The	subsequent	determination	of	the	J2	component	yielded	a	core	diameter	estimate	of	about	220km	(140mi)	assuming	a	crustal	density	similar	to	that	of	the	HED.[113]Dawn	data	can	be	accessed	by	the	public	at	the	UCLA
website.[119]Albedo	and	spectral	maps	of	4	Vesta,	as	determined	from	Hubble	Space	Telescope	images	from	November	1994Elevation	map	of	4	Vesta,	as	determined	from	Hubble	Space	Telescope	images	of	May	1996Elevation	diagram	of	4	Vesta	(as	determined	from	Hubble	Space	Telescope	images	of	May	1996)	viewed	from	the	south-east,	showing
Rheasilvia	crater	at	the	south	pole	and	Feralia	Planitia	near	the	equatorVesta	seen	by	the	Hubble	Space	Telescope	in	May	2007The	2006	IAU	draft	proposal	on	the	definition	of	a	planet	listed	Vesta	as	a	candidate.[120]	Vesta	is	shown	fourth	from	the	left	along	the	bottom	row.Vesta	comes	into	view	as	the	Dawn	spacecraft	approaches	and	enters
orbit:Vesta	from	100,000km(1	July	2011)Vesta	from	41,000km(9	July	2011)In	orbit	at	16,000km(17	July	2011)In	orbit	from	10,500km(18	July	2011)The	northern	hemisphere	from	5,200km(23	July	2011)In	orbit	from	5,200km(24	July	2011)In	orbit	from	3,700km(31	July	2011)Full	rotation(1	August	2011)Composite	greyscale	imageCratered	terrain	with
hills	and	ridges(6	August	2011)Densely	cratered	terrain	near	terminator(6	August	2011)Vestan	craters	in	various	states	of	degradation,	with	troughs	at	bottom(6	August	2011)Hill	shaded	central	mound	at	the	south	pole	of	Vesta(2	February	2015)Detailed	images	retrieved	during	the	high-altitude	(6070m/pixel)	and	low-altitude	(~20m/pixel)	mapping
orbits	are	available	on	the	Dawn	Mission	website	of	JPL/NASA.[121]Annotated	image	from	Earth's	surface	in	June	2007	with	(4)	VestaIts	size	and	unusually	bright	surface	make	Vesta	the	brightest	asteroid,	and	it	is	occasionally	visible	to	the	naked	eye	from	dark	skies	(without	light	pollution).	In	May	and	June	2007,	Vesta	reached	a	peak	magnitude	of
+5.4,	the	brightest	since	1989.[122]	At	that	time,	opposition	and	perihelion	were	only	a	few	weeks	apart.[123]	It	was	brighter	still	at	its	22	June	2018	opposition,	reaching	a	magnitude	of	+5.3.[124]Less	favorable	oppositions	during	late	autumn	2008	in	the	Northern	Hemisphere	still	had	Vesta	at	a	magnitude	of	from	+6.5	to	+7.3.[125]	Even	when	in
conjunction	with	the	Sun,	Vesta	will	have	a	magnitude	around	+8.5;	thus	from	a	pollution-free	sky	it	can	be	observed	with	binoculars	even	at	elongations	much	smaller	than	near	opposition.[125]In	2010,	Vesta	reached	opposition	in	the	constellation	of	Leo	on	the	night	of	1718	February,	at	about	magnitude	6.1,[126]	a	brightness	that	makes	it	visible	in
binocular	range	but	generally	not	for	the	naked	eye.	Under	perfect	dark	sky	conditions	where	all	light	pollution	is	absent	it	might	be	visible	to	an	experienced	observer	without	the	use	of	a	telescope	or	binoculars.	Vesta	came	to	opposition	again	on	5	August	2011,	in	the	constellation	of	Capricornus	at	about	magnitude	5.6.[126][127]Vesta	was	at
opposition	again	on	9	December	2012.[128]	According	to	Sky	and	Telescope	magazine,	this	year	Vesta	came	within	about	6	degrees	of	1	Ceres	during	the	winter	of	2012	and	spring	2013.[129]	Vesta	orbits	the	Sun	in	3.63	years	and	Ceres	in	4.6	years,	so	every	17.4	years	Vesta	overtakes	Ceres	(the	previous	overtaking	was	in	April	1996).[129]	On	1
December	2012,	Vesta	had	a	magnitude	of	6.6,	but	it	had	decreased	to	8.4	by	1	May	2013.[129]Conjunction	of	Ceres	and	Vesta	near	the	star	Gamma	Virginis	on	5	July	2014	in	the	Constellation	of	Virgo.Ceres	and	Vesta	came	within	one	degree	of	each	other	in	the	night	sky	in	July	2014.[129]3103	Eger3551	Verenia3908	Nyx4055	MagellanAsteroids	in
fictionDiogeniteEucriteList	of	former	planetsHowarditeVesta	family	(vestoids)List	of	tallest	mountains	in	the	Solar	System^	Marc	Rayman	of	the	JPL	Dawn	team	used	"Vestian"	(analogous	to	the	Greek	cognate	Hestian)	a	few	times	in	2010	and	early	2011	in	his	Dawn	Journal,	and	the	Planetary	Society	continued	to	use	that	form	for	a	few	more	years.
[2]	The	word	had	been	used	elsewhere,	e.g.	in	Tsiolkovsky	(1960)	The	call	of	the	cosmos.	However,	otherwise	the	shorter	form	"Vestan"	has	been	used	by	JPL.[3]	Most	modern	print	sources	also	use	"Vestan".[4][5]Note	that	the	related	word	"Vestalian"	refers	to	people	or	things	associated	with	Vesta,	such	as	the	vestal	virgins,	not	to	Vesta	herself.^
Calculated	using	the	known	dimensions	assuming	an	ellipsoid.^	Calculated	using	(1)	the	known	rotation	period	(5.342h)[6]	and	(2)	the	equatorial	radius	Req	(285km)[10]	of	the	best-fit	biaxial	ellipsoid	to	Asteroid	4	Vesta.^	a	b	topocentric	coordinates	computed	for	the	selected	location:	Greenwich,	United	Kingdom[14]^	On	10	February	2009,	during
Ceres	perihelion,	Ceres	was	closer	to	the	Sun	than	Vesta,	because	Vesta	has	an	aphelion	distance	greater	than	Ceres's	perihelion	distance.	(10	February	2009:	Vesta	2.56AU;	Ceres	2.54AU)^	wist	is	the	closest	Chinese	approximation	of	the	Latin	pronunciation	westa.^	Some	sources	contemporaneous	to	Gauss	invented	more	elaborate	forms,	such	as
and	.[43][44]	A	simplification	of	the	latter	from	c.1930,	,[45]	never	caught	on.^	This	symbol	can	be	seen	in	the	top	of	the	most	elaborate	of	the	earlier	forms,	.	It	dates	from	1973,	at	the	beginning	of	astrological	interest	in	asteroids.[46]^	The	data	returned	will	include,	for	both	asteroids,	full	surface	imagery,	full	surface	spectrometric	mapping,
elemental	abundances,	topographic	profiles,	gravity	fields,	and	mapping	of	remnant	magnetism,	if	any.[53]^	that	is,	blue	in	the	north	does	not	mean	the	same	thing	as	blue	in	the	south.^	Note	that	6	Hebe	may	be	the	parent	body	for	H	chondrites,	one	of	the	most	common	meteorite	types.^	"Vesta".	Dictionary.com	Unabridged	(Online).	n.d.^	"Search
Results".	Planetary	Society.	Archived	from	the	original	on	27	July	2020.	Retrieved	31	August	2012.^	"Search	Dawn	Mission".	JPL.	Archived	from	the	original	on	5	March	2016.^	Meteoritics	&	planetary	science,	Volume	42,	Issues	68,	2007;	Origin	and	evolution	of	Earth,	National	Research	Council	et	al.,	2008^	E.g	in	Meteoritics	&	planetary	science
(volume	42,	issues	68,	2007)	and	Origin	and	evolution	of	Earth	(National	Research	Council	et	al.,	2008).^	a	b	c	d	e	f	g	h	"JPL	Small-Body	Database	Browser:	4	Vesta".	Archived	from	the	original	on	26	September	2021.	Retrieved	1	June	2008.^	Souami,	D.;	Souchay,	J.	(July	2012).	"The	solar	system's	invariable	plane".	Astronomy	&	Astrophysics.	543:	11.
Bibcode:2012A&A...543A.133S.	doi:10.1051/0004-6361/201219011.	A133.^	"Horizons	Batch	for	4	Vesta	on	2021-Dec-26"	(Perihelion	occurs	when	rdot	flips	from	negative	to	positive).	JPL	Horizons.	Retrieved	26	September	2021.	(Epoch	2021-Jul-01/Soln.date:	2021-Apr-13)^	"AstDyS-2	Vesta	Synthetic	Proper	Orbital	Elements".	Department	of
Mathematics,	University	of	Pisa,	Italy.	Retrieved	1	October	2011.^	a	b	c	d	e	f	g	h	i	j	Russell,	C.	T.;	etal.	(2012).	"Dawn	at	Vesta:	Testing	the	Protoplanetary	Paradigm"	(PDF).	Science.	336	(6082):	684686.	Bibcode:2012Sci...336..684R.	doi:10.1126/science.1219381.	PMID22582253.	S2CID206540168.^	"surface	ellipsoid	286.3x278.6x223.2".	Wolfram-
Alpha:	Computational	Knowledge	Engine.^	Konopliv,	A.	S.;	etal.	(2014).	"The	Vesta	gravity	field,	spin	pole	and	rotation	period,	landmark	positions,	and	ephemeris	from	the	Dawn	tracking	and	optical	data".	Icarus.	240:	118132.	Bibcode:2014Icar..240..103K.	doi:10.1016/j.icarus.2013.09.005.	PDF	copy^	Harris,	A.	W.	(2006).	Warner,	B.	D.;	Pravec,	P.
(eds.).	"Asteroid	Lightcurve	Derived	Data.	EAR-A-5-DDR-DERIVED-LIGHTCURVE-V8.0".	NASA	Planetary	Data	System.	Archived	from	the	original	on	9	April	2009.	Retrieved	26	December	2013.^	"Asteroid	4	Vesta".	TheSkyLive.	Retrieved	13	December	2022.^	a	b	Tedesco,	E.	F.;	Noah,	P.	V.;	Noah,	M.;	Price,	S.	D.	(2004).	"Infra-Red	Astronomy	Satellite
(IRAS)	Minor	Planet	Survey.	IRAS-A-FPA-3-RDR-IMPS-V6.0".	NASA	Planetary	Data	System.	Archived	from	the	original	on	9	April	2009.	Retrieved	15	March	2007.^	a	b	Mueller,	T.	G.;	Metcalfe,	L.	(2001).	"ISO	and	Asteroids"	(PDF).	ESA	Bulletin.	108:	38.	Bibcode:2001ESABu.108...39M.	Archived	(PDF)	from	the	original	on	11	September	2005.^	Neese,
C.;	Ed.	(2005).	"Asteroid	Taxonomy	EAR-A-5-DDR-TAXONOMY-V5.0".	NASA	Planetary	Data	System.	Archived	from	the	original	on	10	March	2007.	Retrieved	25	December	2013.^	a	b	Menzel,	Donald	H.	&	Pasachoff,	Jay	M.	(1983).	A	Field	Guide	to	the	Stars	and	Planets	(2nded.).	Boston,	MA:	Houghton	Mifflin.	p.391.	ISBN978-0-395-34835-2.^	"In
Depth	-	4	Vesta".	NASA	Solar	System	Exploration.	10	November	2017.	Retrieved	13	December	2022.^	"Dawn	Mission	Overview".	NASA.	Archived	from	the	original	on	16	October	2011.	Retrieved	14	August	2011.^	Lang,	Kenneth	(2011).	The	Cambridge	Guide	to	the	Solar	System.	Cambridge	University	Press.	pp.372,	442.	ISBN9780521198578.^
Russell,	C.	T.;	etal.	(2011).	"Exploring	the	smallest	terrestrial	planet:	Dawn	at	Vesta"	(PDF).	EPSC	Abstracts.	2011	EPSC-DPS	Joint	Meeting.	Vol.6.	EPSC-DPS2011-97-3.	Archived	(PDF)	from	the	original	on	20	March	2012.^	a	b	Pitjeva,	E.	V.	(2005).	"High-Precision	Ephemerides	of	PlanetsEPM	and	Determination	of	Some	Astronomical	Constants"
(PDF).	Solar	System	Research.	39	(3):	176186.	Bibcode:2005SoSyR..39..176P.	doi:10.1007/s11208-005-0033-2.	S2CID120467483.	Archived	from	the	original	(PDF)	on	31	October	2008.^	Amos,	Jonathan	(11	May	2012).	"Asteroid	Vesta	is	'last	of	a	kind'	rock".	BBC	News.^	Jutzi,	M.;	E.	Asphaug;	P.	Gillet;	J.-A.	Barrat;	W.	Benz	(14	February	2013).	"The
structure	of	the	asteroid	4	Vesta	as	revealed	by	models	of	planet-scale".	Nature.	494	(7436):	207210.	Bibcode:2013Natur.494..207J.	doi:10.1038/nature11892.	PMID23407535.	S2CID4410838.^	Cook,	Jia-Rui.	"Dawn	Reality-Checks	Telescope	Studies	of	Asteroids".	Archived	from	the	original	on	2	May	2014.	Retrieved	30	April	2014.^	a	b	c	McSween,	H.
Y.;	R.	P.	Binzel;	M.	C.	De	Sanctis;	etal.	(27	November	2013).	"Dawn;	the	Vesta-HED	connection;	and	the	geologic	context	for	eucrite,	diogenites,	and	howardites".	Meteoritics	&	Planetary	Science.	48	(11):	2090214.	Bibcode:2013M&PS...48.2090M.	doi:10.1111/maps.12108.	S2CID131100157.^	a	b	Kelley,	M.	S.;	etal.	(2003).	"Quantified	mineralogical
evidence	for	a	common	origin	of	1929	Kollaa	with	4	Vesta	and	the	HED	meteorites".	Icarus.	165	(1):	215218.	Bibcode:2003Icar..165..215K.	doi:10.1016/S0019-1035(03)00149-0.^	a	b	"Vesta".	NASA/JPL.	12	July	2011.	Archived	from	the	original	on	29	June	2011.	Retrieved	30	July	2011.^	"Ceres,	Pallas,	Vesta,	and	Hygiea".	Gravity	Simulator.	Archived
from	the	original	on	17	June	2008.	Retrieved	31	May	2008.^	"Mission	>	Mission	Status	Dawn	Mission".	JPL.	Archived	from	the	original	on	11	May	2013.	Retrieved	6	September	2012.^	a	b	Ammannito,	E.;	M.	C.	De	Sanctis;	E.	Palomba;	etal.	(2013).	"Olivine	in	an	unexpected	location	on	Vesta's	surface".	Nature.	504	(7478):	122125.
Bibcode:2013Natur.504..122A.	doi:10.1038/nature12665.	PMID24196707.	S2CID4464889.^	Cook,	Jia-Rui.	"It's	Complicated:	Dawn	Spurs	Rewrite	of	Vesta's	Story".	Archived	from	the	original	on	2	May	2014.	Retrieved	30	April	2014.^	Littmann,	Mark	(2004).	Planets	Beyond:	Discovering	the	Outer	Solar	System.	Dover	Books	on	Astronomy.	Courier
Dover	Publications.	p.21.	ISBN978-0-486-43602-9.^	Lynn,	W.	T.	(February	1907).	"The	discovery	of	Vesta".	The	Observatory.	30:	103105.	Bibcode:1907Obs....30..103L.^	Dunnington,	Guy	Waldo;	Gray,	Jeremy;	Dohse,	Fritz-Egbert	(2004).	Carl	Friedrich	Gauss:	Titan	of	Science.	The	Mathematical	Association	of	America.	p.76.	ISBN978-0-88385-547-8.^
Rao,	K.	S.;	Berghe,	G.	V.	(2003).	"Gauss,	Ramanujan	and	Hypergeometric	Series	Revisited".	Historia	Scientiarum.	13	(2):	123133.^	Schmadel,	Lutz	D.	(2003).	Dictionary	of	Minor	Planet	Names:	Prepared	on	Behalf	of	Commission	20	Under	the	Auspices	of	the	International	Astronomical	Union.	Springer.	p.15.	ISBN978-3-540-00238-3.^	von	Zach,	Franz
Xaver	(1807).	Monatliche	correspondenz	zur	befrderung	der	erd-	und	himmels-kunde.	Vol.15.	p.507.^	Carlini,	Francesco	(1808).	Effemeridi	astronomiche	di	Milano	per	l'anno	1809.^	a	b	Bala,	Gavin	Jared;	Miller,	Kirk	(18	September	2023).	Unicode	request	for	historical	asteroid	symbols	(PDF)	(Report).	Unicode	Consortium.	Retrieved	26	September
2023	via	unicode.org.^	"Proposed	new	characters".	unicode.org.	The	Pipeline.	Unicode	Consortium.	Retrieved	6	November	2023.^	Bureau	des	longitudes	(1807).	Annuaire	pour	l'an	1808.	p.5.^	Canovai,	Stanislao;	del-Ricco,	Gaetano	(1810).	Elementi	di	fisica	matematica.	p.149.^	Koch,	Rudolf	(1955)	[1930].	The	Book	of	Signs	(reprinted.).	Dover.^
Bach,	Eleanor	(1973).	Ephemerides	of	the	asteroids:	Ceres,	Pallas,	Juno,	Vesta,	19002000.	Celestial	Communications.	Bibcode:1973eacp.book.....B.^	Wells,	David	A.	(1851).	Bliss,	George	Jr.	(ed.).	"The	Planet	Hygiea".	Annual	of	Scientific	Discovery	for	the	year	1850,	quoted	by	spaceweather.com	archives,	2006-09-13.	Retrieved	1	June	2008.^	Hilton,
James	L.	When	Did	the	Asteroids	Become	Minor	Planets?	(Report).	Archived	from	the	original	on	24	March	2008	via	U.S.	Naval	Observatory	website,	particularly	the	discussion	of	Gould,	B.	A.	(1852).	"On	the	Symbolic	Notation	of	the	Asteroids".	Astronomical	Journal.	2:	80.	Bibcode:1852AJ......2...80G.	doi:10.1086/100212.	and	immediate	subsequent
history.	Also,	the	discussion	of	C.	J.	Cunningham	(1988)	Introduction	to	Asteroids	explains	the	parenthetical	part.^	"New	SPHERE	view	of	Vesta".	www.eso.org.	Retrieved	25	June	2018.^	McFadden,	L.	A.;	Emerson,	G.;	Warner,	E.	M.;	Onukwubiti,	U.;	Li,	J.-Y.	"Photometry	of	4	Vesta	from	its	2007	Apparition".	Proceedings,	39th	Lunar	and	Planetary
Science	Conference.	League	City,	Texas.	Bibcode:2008LPI....39.2546M.	1014	March	2008^	Hughes,	D.	W.	(September	1994).	"The	Historical	Unravelling	of	the	Diameters	of	the	First	Four	Asteroids".	Quarterly	Journal	of	the	Royal	Astronomical	Society.	35	(3):	331.	Bibcode:1994QJRAS..35..331H.^	Povenmire,	H.	(September	2001).	"The	January	4,
1991	Occultation	of	SAO	93228	by	Asteroid	(4)	Vesta".	Meteoritics	&	Planetary	Science.	36	(Supplement):	A165.	Bibcode:2001M&PSA..36Q.165P.	doi:10.1111/j.1945-5100.2001.tb01534.x.^	a	b	"Dawn-NASA-NSSDCA-Spacecraft-Details".	Archived	from	the	original	on	23	May	2022.	Retrieved	16	December	2022.^	Hertz,	Hans	G.	(19	April	1968).	"Mass
of	Vesta".	Science.	160	(3825):	299300.	Bibcode:1968Sci...160..299H.	doi:10.1126/science.160.3825.299.	PMID17788233.	S2CID2555834.^	Kovaevi,	A.	(January	2005).	"Determination	of	the	mass	of	(4)	Vesta	based	on	new	close	approaches".	Astronomy	and	Astrophysics.	430	(1):	319325.	Bibcode:2005A&A...430..319K.	doi:10.1051/0004-
6361:20035872.^	Christou,	A.	A.	(2000).	"Co-orbital	objects	in	the	main	asteroid	belt".	Astronomy	and	Astrophysics.	356:	L71	L74.	Bibcode:2000A&A...356L..71C.^	a	b	Christou,	A.	A.;	Wiegert,	P.	(January	2012).	"A	population	of	Main	Belt	Asteroids	co-orbiting	with	Ceres	and	Vesta".	Icarus.	217	(1):	2742.	arXiv:1110.4810.
Bibcode:2012Icar..217...27C.	doi:10.1016/j.icarus.2011.10.016.	ISSN0019-1035.	S2CID59474402.^	a	b	c	Thomas,	P.	C.;	etal.	(1997).	"Vesta:	Spin	Pole,	Size,	and	Shape	from	HST	Images".	Icarus.	128	(1):	8894.	Bibcode:1997Icar..128...88T.	doi:10.1006/icar.1997.5736.^	a	b	Hand,	Eric	(2012).	"Space	missions	trigger	map	wars".	Nature.	488	(7412):
442443.	Bibcode:2012Natur.488..442H.	doi:10.1038/488442a.	PMID22914145.^	"IAU	WGCCRE	Coordinate	System	for	Vesta	|	USGS	Astrogeology	Science	Center".	Astrogeology.usgs.gov.	15	November	2013.	Retrieved	25	June	2014.^	Li,	Jian-Yang;	Mafi,	Joseph	N.	"Body-Fixed	Coordinate	Systems	for	Asteroid	(4)	Vesta"	(PDF).	Planetary	Data	System.
Archived	(PDF)	from	the	original	on	6	November	2015.^	Baer,	James;	Chesley,	Steven	R.	(2008).	"Astrometric	masses	of	21	asteroids,	and	an	integrated	asteroid	ephemeris".	Celestial	Mechanics	and	Dynamical	Astronomy.	100	(1):	2742.	Bibcode:2008CeMDA.100...27B.	doi:10.1007/s10569-007-9103-8.^	a	b	Park,	R.	S.;	Ermakov,	A.	I.;	Konopliv,	A.	S.;
Vaughan,	A.	T.;	Rambaux,	N.;	Bills,	B.	G.;	Castillo-Rogez,	J.	C.;	Fu,	R.	R.;	Jacobson,	S.	A.;	Stewart,	S.	T.;	Toplis,	M.	J.	(23	April	2025).	"A	small	core	in	Vesta	inferred	from	Dawn's	observations".	Nature	Astronomy:	111.	doi:10.1038/s41550-025-02533-7.	ISSN2397-3366.^	Carry,	B.;	etal.	(2009).	"Physical	properties	of	(2)	Pallas".	Icarus.	205	(2):	460472.
arXiv:0912.3626v1.	Bibcode:2010Icar..205..460C.	doi:10.1016/j.icarus.2009.08.007.	S2CID119194526.^	"The	IAU	draft	definition	of	"planet"	and	"plutons"".	IAU.	August	2006.	Archived	from	the	original	on	9	January	2010.	Retrieved	16	December	2009.	(XXVI)^	Fu,	R.	R.;	Hager,	B.	H.;	Ermakov,	A.I.;	Zuber,	M.T.	(2013).	"Early	Viscous	Relaxation	of
Asteroid	Vesta	and	Implications	for	Late	Impact-Driven	Despinning"	(PDF).	44th	Lunar	and	Planetary	Science	Conference	(1719):	2115.	Bibcode:2013LPI....44.2115F.	Archived	(PDF)	from	the	original	on	26	July	2014.^	Asmar,	S.	W.;	Konopliv,	A.	S.;	Park,	R.	S.;	etal.	(2012).	"The	Gravity	Field	of	Vesta	and	Implications	for	Interior	Structure"	(PDF).
43rd	Lunar	and	Planetary	Science	Conference	(1659):	2600.	Bibcode:2012LPI....43.2600A.	Archived	(PDF)	from	the	original	on	20	October	2013.^	Zellner,	N.	E.	B.;	Gibbard,	S.;	de	Pater,	I.;	etal.	(2005).	"Near-IR	imaging	of	Asteroid	4	Vesta"	(PDF).	Icarus.	177	(1):	190195.	Bibcode:2005Icar..177..190Z.	doi:10.1016/j.icarus.2005.03.024.	Archived	from
the	original	(PDF)	on	23	November	2008.^	a	b	c	Jaumann,	R.;	etal.	(2012).	"Vesta's	Shape	and	Morphology".	Science.	336	(6082):	687690.	Bibcode:2012Sci...336..687J.	doi:10.1126/science.1219122.	PMID22582254.	S2CID206540010.^	a	b	c	d	Williams,	D.	A.;	Yingst,	R.	A.;	Garry,	W.	B.	(December	2014).	"Introduction:	The	geologic	mapping	of	Vesta".
Icarus.	244:	112.	Bibcode:2014Icar..244....1W.	doi:10.1016/j.icarus.2014.03.001.	hdl:2286/R.I.28071.Williams,	D.	A.;	etal.	(December	2014).	"The	geology	of	the	Marcia	quadrangle	of	asteroid	Vesta:	Assessing	the	effects	of	large,	young	craters".	Icarus.	244:	7488.	Bibcode:2014Icar..244...74W.	doi:10.1016/j.icarus.2014.01.033.	hdl:2286/R.I.28061.
S2CID5505009.^	a	b	Scully,	J.	E.	C.;	Yin,	A.;	Russell,	C.	T.;	etal.	(December	2014).	"Geomorphology	and	structural	geology	of	Saturnalia	Fossae	and	adjacent	structures	in	the	northern	hemisphere	of	Vesta".	Icarus.	244:	2340.	Bibcode:2014Icar..244...23S.	doi:10.1016/j.icarus.2014.01.013.	hdl:2286/R.I.28070.	Archived	(PDF)	from	the	original	on	21
July	2018.Scully,	J.	E.	C.;	etal.	(2014).	"Sub-curvilinear	gullies	interpreted	as	evidence	for	transient	water	flow	on	Vesta"	(PDF).	45th	Lunar	and	Planetary	Science	Conference	(1777):	1796.	Bibcode:2014LPI....45.1796S.^	Schfer,	M.;	Nathues,	A.;	Williams,	D.	A.;	etal.	(December	2014).	"Imprint	of	the	Rheasilvia	impact	on	Vesta	Geologic	mapping	of
quadrangles	Gegania	and	Lucaria"	(PDF).	Icarus.	244:	6073.	Bibcode:2014Icar..244...60S.	doi:10.1016/j.icarus.2014.06.026.	hdl:2286/R.I.28060.	Archived	from	the	original	(PDF)	on	28	April	2019.	Retrieved	24	September	2019.^	Kneissl,	T.;	Schmedemann,	N.;	Reddy,	V.;	etal.	(December	2014).	"Morphology	and	formation	ages	of	mid-sized	post-
Rheasilvia	craters	Geology	of	quadrangle	Tuccia,	Vesta".	Icarus.	244:	133157.	Bibcode:2014Icar..244..133K.	doi:10.1016/j.icarus.2014.02.012.	hdl:2286/R.I.28058.^	a	b	c	d	e	Schenk,	P.;	etal.	(2012).	"The	Geologically	Recent	Giant	Impact	Basins	at	Vesta's	South	Pole".	Science.	336	(6082):	694697.	Bibcode:2012Sci...336..694S.
doi:10.1126/science.1223272.	PMID22582256.	S2CID206541950.^	"Rheasilvia	Super	Mysterious	South	Pole	Basin	at	Vesta	is	Named	after	Romulus	and	Remus	Roman	Mother".	Universe	Today.	21	September	2011.	Retrieved	23	September	2011.^	Binzel,	R.	P.;	etal.	(1997).	"Geologic	Mapping	of	Vesta	from	1994	Hubble	Space	Telescope	Images".
Icarus.	128	(1):	95103.	Bibcode:1997Icar..128...95B.	doi:10.1006/icar.1997.5734.^	a	b	c	Ivanov,	B.	A.;	Melosh,	H.	J.	(2013).	"Rheasilvia	impact	basin	on	Vesta:	Constraints	on	formation	models	from	the	central	peak	topography".	Journal	of	Geophysical	Research:	Planets.	118	(7):	15451555.	Bibcode:2013JGRE..118.1545I.	doi:10.1002/jgre.20108.^
Bowling,	T.	J.;	Richard,	G.;	Melosh,	H.	J.	(2013).	"Numerical	simulations	of	the	Rheasilvia	impact	basin	on	Vesta".	Journal	of	Geophysical	Research:	Planets.	118	(8):	16221639.	Bibcode:2013JGRE..118.1622B.	doi:10.1002/jgre.20113.^	a	b	Marchi,	S.;	McSween,	H.	Y.;	O'Brien,	D.	P.	(2012).	"The	Violent	Collisional	History	of	Vesta".	Science.	336	(6082):
690694.	Bibcode:2012Sci...336..690M.	doi:10.1126/science.1218405.^	a	b	De	Sanctis,	M.	C.;	Combe,	J.-P.;	Ammannito,	E.	(2012).	"Spectroscopic	Characterization	of	Mineralogy	and	Its	Diversity	on	Vesta".	Science.	336	(6082):	697700.	Bibcode:2012Sci...336..697D.	doi:10.1126/science.1219270.^	a	b	Clnet,	H.;	Jutzi,	M.;	Barrat,	J.-A.	(2014).
"Constraints	on	Vesta's	crustal	structure	and	evolution	from	VIR/Dawn	data:	Olivine	detection	and	analysis".	Icarus.	244:	146157.	Bibcode:2014Icar..244..146C.	doi:10.1016/j.icarus.2014.04.010.^	a	b	Buczkowski,	D.L.;	Raymond,	C.A.;	Williams,	D.A.;	etal.	(2012).	"Large-scale	troughs	on	Vesta:	A	signature	of	planetary	tectonics".	Geophysical	Research
Letters.	39	(18):	L18205.	Bibcode:2012GeoRL..3918205B.	doi:10.1029/2012GL052959.^	Garry,	W.B.;	Sykes,	M.;	Buczkowski,	D.L.;	etal.	(March	2012).	Geologic	Mapping	of	Av-10	Oppia	Quadrangle	of	Asteroid	4	Vesta	(PDF).	43rd	Lunar	and	Planetary	Science	Conference,	held	1923	March	2012	at	The	Woodlands,	Texas.	id.2315.
Bibcode:2012LPI....43.2315G.	LPI	Contribution	No.	1659.	Archived	(PDF)	from	the	original	on	24	April	2014.Garry,	W.B.;	Sykes,	M.;	Buczkowski,	D.L.;	etal.	(April	2012).	"Geologic	Mapping	of	Av-10	Oppia	Quadrangle	of	Asteroid	4	Vesta"	(PDF).	Geophysical	Research	Abstracts.	EGU	General	Assembly	2012,	held	2227	April	2012	in	Vienna,	Austria.
Vol.14.	p.5711.	Bibcode:2012EGUGA..14.5711G.	EGU2012-5711-1.	Archived	(PDF)	from	the	original	on	8	April	2014.^	"Nomenclature	Search	Results	/	Target:	VESTA	/	Feature	Type:	Crater,	craters".	Gazetteer	of	Planetary	Nomenclature.	IAU.^	Beatty,	J.	Kelly	(25	June	2004).	"Eros's	puzzling	surface".	Sky	and	Telescope.	Retrieved	18	October	2023
via	skyandtelescope.org.	To	geologists'	surprise,	the	asteroid	Eros	has	more	than	250'ponds'	thought	to	contain	compacted	deposits	of	finely	ground	dust.^	Parekh,	R.;	Otto,	K.A.;	Matz,	K.D.;	Jaumann,	R.;	Krohn,	K.;	Roatsch,	T.;	etal.	(28	February	2022)	[1	November	2021].	"Formation	of	ejecta	and	dust	pond	deposits	on	asteroid	Vesta".	Journal	of
Geophysical	Research:	Planets.	126	(11):	e2021JE006873.	doi:10.1029/2021JE006873.^	Hirata,	N.	(2023).	"Secondary	Cratering	From	Rheasilvia	as	the	Possible	Origin	of	Vesta's	Equatorial	Troughs".	Journal	of	Geophysical	Research:	Planets.	128	(3).	arXiv:2303.14955.	Bibcode:2023JGRE..12807473H.	doi:10.1029/2022JE007473.
hdl:20.500.14094/0100482053.	Retrieved	4	March	2024.^	De	Sanctis,	M.	C.;	etal.	(2012).	"Spectroscopic	Characterization	of	Mineralogy	and	Its	Diversity	Across	Vesta".	Science.	336	(6082):	697700.	Bibcode:2012Sci...336..697D.	doi:10.1126/science.1219270.	PMID22582257.	S2CID11645621.^	Prettyman,	T.	H.;	etal.	(2012).	"Elemental	Mapping	by
Dawn	Reveals	Exogenic	H	in	Vesta's	Regolith".	Science.	338	(6104):	242246.	Bibcode:2012Sci...338..242P.	doi:10.1126/science.1225354.	PMID22997135.	S2CID206542798.^	a	b	Reddy,	V.;	etal.	(2012).	"Color	and	Albedo	Heterogeneity	of	Vesta	from	Dawn".	Science.	336	(6082):	700704.	Bibcode:2012Sci...336..700R.	doi:10.1126/science.1219088.
PMID22582258.	S2CID1326996.^	Palomba,	E.;	Longobardo,	A.;	De	Sanctis,	M.	C.;	etal.	(September	2015).	"Detection	of	new	olivine-rich	locations	on	Vesta".	Icarus.	258:	120134.	Bibcode:2015Icar..258..120P.	doi:10.1016/j.icarus.2015.06.011.^	Denevi,	B.	W.;	etal.	(2012).	"Pitted	Terrain	on	Vesta	and	Implications	for	the	Presence	of	Volatiles".
Science.	338	(6104):	246249.	Bibcode:2012Sci...338..246D.	CiteSeerX10.1.1.656.1476.	doi:10.1126/science.1225374.	PMID22997131.	S2CID22892716.^	De	Sanctis,	M.	C.;	etal.	(2012).	"Detection	of	Widespread	Hydrated	Materials	on	Vesta	by	the	vir	Imaging	Spectrometer	on	Board	Thedawnmission".	The	Astrophysical	Journal	Letters.	758	(2):	L36.
Bibcode:2012ApJ...758L..36D.	doi:10.1088/2041-8205/758/2/L36.^	"A	look	into	Vesta's	interior".	Max-Planck-Gesellschaft.	6	January	2011.^	Ghosh,	A.;	McSween,	H.	Y.	(1998).	"A	Thermal	Model	for	the	Differentiation	of	Asteroid	4	Vesta,	Based	on	Radiogenic	Heating".	Icarus.	134	(2):	187206.	Bibcode:1998Icar..134..187G.
doi:10.1006/icar.1998.5956.^	Righter,	K.;	Drake,	M.	J.	(1997).	"A	magma	ocean	on	Vesta:	Core	formation	and	petrogenesis	of	eucrites	and	diogenites".	Meteoritics	&	Planetary	Science.	32	(6):	929944.	Bibcode:1997M&PS...32..929R.	doi:10.1111/j.1945-5100.1997.tb01582.x.	S2CID128684062.^	Drake,	M.	J.	(2001).	"The	eucrite/Vesta	story".
Meteoritics	&	Planetary	Science.	36	(4):	501513.	Bibcode:2001M&PS...36..501D.	doi:10.1111/j.1945-5100.2001.tb01892.x.	S2CID128394153.^	Sahijpal,	S.;	Soni,	P.;	Gagan,	G.	(2007).	"Numerical	simulations	of	the	differentiation	of	accreting	planetesimals	with	26Al	and	60Fe	as	the	heat	sources".	Meteoritics	&	Planetary	Science.	42	(9):	15291548.
Bibcode:2007M&PS...42.1529S.	doi:10.1111/j.1945-5100.2007.tb00589.x.	S2CID55463404.^	Gupta,	G.;	Sahijpal,	S.	(2010).	"Differentiation	of	Vesta	and	the	parent	bodies	of	other	achondrites".	J.	Geophys.	Res.	Planets.	115	(E8):	E08001.	Bibcode:2010JGRE..115.8001G.	doi:10.1029/2009JE003525.	S2CID129905814.^	Cook,	Jia-Rui	C.	(29	March
2011).	"When	Is	an	Asteroid	Not	an	Asteroid?".	NASA/JPL.	Archived	from	the	original	on	29	June	2011.	Retrieved	30	July	2011.^	Takeda,	H.	(1997).	"Mineralogical	records	of	early	planetary	processes	on	the	HED	parent	body	with	reference	to	Vesta".	Meteoritics	&	Planetary	Science.	32	(6):	841853.	Bibcode:1997M&PS...32..841T.	doi:10.1111/j.1945-
5100.1997.tb01574.x.^	Yamaguchi,	A.;	Taylor,	G.	J.;	Keil,	K.	(1995).	"Metamorphic	History	of	the	Eucritic	Crust	of	4	Vesta".	Meteoritical	Society.	30	(5):	603.	Bibcode:1995Metic..30..603Y.^	Pieters,	C.	M.;	Ammannito,	E.;	Blewett,	D.	T.;	etal.	(2012).	"Distinctive	space	weathering	on	Vesta	from	regolith	mixing	processes".	Nature.	491	(7422):	7982.
Bibcode:2012Natur.491...79P.	doi:10.1038/nature11534.	PMID23128227.	S2CID4407636.^	McCord,	T.	B.;	Li,	J.	-Y.;	Combe,	J.	-P.;	etal.	(2012).	"Dark	material	on	Vesta	from	the	infall	of	carbonaceous	volatile-rich	material".	Nature.	491	(7422):	8386.	Bibcode:2012Natur.491...83M.	doi:10.1038/nature11561.	PMID23128228.	S2CID2058249.^	Rayman,
Marc	(8	April	2015).	Now	Appearing	At	a	Dwarf	Planet	Near	You:	NASA's	Dawn	Mission	to	the	Asteroid	Belt	(Speech).	Silicon	Valley	Astronomy	Lectures.	Foothill	College,	Los	Altos,	CA.	Archived	from	the	original	on	14	November	2021.	Retrieved	7	July	2018.^	Ulivi,	Paolo;	Harland,	David	(2008).	Robotic	Exploration	of	the	Solar	System:	Hiatus	and
Renewal,	19831996.	Springer	Praxis	Books	in	Space	Exploration.	Springer.	pp.117125.	ISBN978-0-387-78904-0.^	Russell,	C.	T.;	Capaccioni,	F.;	Coradini,	A.;	etal.	(October	2007).	"Dawn	Mission	to	Vesta	and	Ceres"	(PDF).	Earth,	Moon,	and	Planets.	101	(12):	6591.	Bibcode:2007EM&P..101...65R.	doi:10.1007/s11038-007-9151-9.	S2CID46423305.
Archived	(PDF)	from	the	original	on	27	September	2011.	Retrieved	13	June	2011.^	Cook,	Jia-Rui	C.;	Brown,	Dwayne	C.	(11	May	2011).	"NASA's	Dawn	Captures	First	Image	of	Nearing	Asteroid".	NASA/JPL.	Archived	from	the	original	on	29	January	2012.	Retrieved	14	May	2011.^	Vega,	Priscilla;	Brown,	Dwayne	(16	July	2011).	"NASA's	Dawn
Spacecraft	Enters	Orbit	Around	Asteroid	Vesta".	NASA.	Archived	from	the	original	on	19	June	2012.	Retrieved	17	July	2011.^	Dawn	mission	timeline	Archived	19	October	2013	at	the	Wayback	Machine^	Mid-continent	Research	for	Education	and	Learning:	McREL	(27	September	2010).	"Dawn	Mission:	Mission".	Dawn	Journal.	Retrieved	29	March
2011.^	"Dawn	has	Departed	the	Giant	Asteroid	Vesta".	NASA	JPL.	NASA.	5	September	2012.	Retrieved	5	September	2012.^	a	b	Russell,	C.	T.;	etal.	(2013).	"Dawn	completes	its	mission	at	4	Vesta".	Meteoritics	&	Planetary	Science.	48	(11):	20762089.	Bibcode:2013M&PS...48.2076R.	doi:10.1111/maps.12091.^	Roatsch,	Thomas;	etal.	(2012).	"High
resolution	Vesta	High	Altitude	Mapping	Orbit	(HAMO)	Atlas	derived	from	Dawn	framing	camera	images".	Planetary	and	Space	Science.	73	(1):	283286.	Bibcode:2012P&SS...73..283R.	doi:10.1016/j.pss.2012.08.021.^	Roatsch,	Thomas;	etal.	(2013).	"High-resolution	Vesta	Low	Altitude	Mapping	Orbit	Atlas	derived	from	Dawn	Framing	Camera	images".
Planetary	and	Space	Science.	85:	293298.	Bibcode:2013P&SS...85..293R.	doi:10.1016/j.pss.2013.06.024.^	"NASA's	Journey	Above	Vesta".	DLR	Institute	of	Planetary	Research	video	with	NASA	JPL	imagery.	NASA.	16	September	2011.	Archived	from	the	original	on	22	April	2021.	Retrieved	18	September	2011.^	"DLR	public	Dawn	products	site".
Archived	from	the	original	on	16	October	2015.^	"NASA	Dawn".^	"Dawn	Public	Data".	Dawn	[website].	Univ.	California,	Los	Angeles.	Retrieved	6	March	2015.^	Gingerich,	Owen	(2006).	"The	Path	to	Defining	Planets"	(PDF).	Dissertatio	cum	Nuncio	Sidereo	Ill.	Tertia.	Vol.VIII,	no.16.	pp.45.	Archived	(PDF)	from	the	original	on	15	March	2015.
Retrieved	13	March	2007.^	"Dawn	Mission	website	of	JPL/NASA".	22	October	2018.^	Bryant,	Greg	(2007).	"Sky	&	Telescope:	See	Vesta	at	Its	Brightest!".	Retrieved	7	May	2007.^	"Vesta	Finder".	Sky	&	Telescope.	Archived	from	the	original	on	12	June	2007.	Retrieved	7	May	2007.^	Harrington,	Philip	S.	(21	October	2010).	Cosmic	Challenge:	The
Ultimate	Observing	List	for	Amateurs.	Cambridge	University	Press.	p.75.	ISBN9781139493680.^	a	b	James,	Andrew	(2008).	"Vesta".	Southern	Astronomical	Delights.	Retrieved	6	November	2008.^	a	b	Yeomans,	Donald	K.;	Chamberlin,	Alan	B.	"Horizons	Ephemeris".	JPL	Solar	System	Dynamics.	Retrieved	9	January	2010.^	"Elements	and	Ephemeris
for	(4)	Vesta".	Minor	Planet	Center.	Archived	from	the	original	on	4	March	2016.^	"2012	Astronomy	Special".	Nightskyonline.info.	Archived	from	the	original	on	20	April	2012.	Retrieved	23	November	2012.^	a	b	c	d	T.	Flanders	Ceres	and	Vesta:	July	2012	April	2013	Sky	&	Telescope.The	Dawn	Mission	to	Minor	Planets	4	Vesta	and	1	Ceres,
Christopher	T.	Russell	and	Carol	A.	Raymond	(Editors),	Springer	(2011),	ISBN978-1-4614-4903-4Keil,	K.;	Geological	History	of	Asteroid	4	Vesta:	The	Smallest	Terrestrial	Planet	in	Asteroids	III,	William	Bottke,	Alberto	Cellino,	Paolo	Paolicchi,	and	Richard	P.	Binzel	(editors),	University	of	Arizona	Press	(2002),	ISBN0-8165-2281-2Wikimedia	Commons
has	media	related	to	Vesta	(asteroid).This	video	explores	Vesta's	landscape,	history	and	planet-like	characteristics.Interactive	3D	gravity	simulation	of	the	Dawn	spacecraft	in	orbit	around	Vesta	Archived	11	June	2020	at	the	Wayback	MachineVesta	Trek	An	integrated	map	browser	of	datasets	and	maps	for	4	VestaJPL	EphemerisViews	of	the	Solar
System:	VestaHubbleSite:	Hubble	Maps	the	Asteroid	VestaEncyclopdia	Britannica,	Vesta	full	articleHubbleSite:	short	movie	composed	from	Hubble	Space	Telescope	images	from	November	1994.Adaptive	optics	views	of	Vesta	from	Keck	Observatory4	Vesta	images	at	ESA/Hubble	Archived	22	January	2009	at	the	Wayback	MachineDawn	at	Vesta
(NASA	press	kit	on	Dawn's	operations	at	Vesta)NASA	video	Archived	22	April	2021	at	the	Wayback	MachineVesta	atlas4	Vesta	at	AstDyS-2,	AsteroidsDynamic	SiteEphemeris	Observation	prediction	Orbital	info	Proper	elements	Observational	info4	Vesta	at	the	JPL	Small-Body	Database	Close	approach	Discovery	Ephemeris	Orbit	viewer	Orbit
parameters	Physical	parametersPortals:	Stars	Spaceflight	Outer	space	ScienceRetrieved	from	"	4The	following	pages	link	to	4	Vesta	External	tools(link	counttransclusion	countsorted	list)	See	help	page	for	transcluding	these	entriesShowing	50	items.View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)Asteroid	(links	|	edit)Apparent	magnitude	(links
|	edit)Comet	(links	|	edit)Classical	Kuiper	belt	object	(links	|	edit)Deep	Space	1	(links	|	edit)Earth	(links	|	edit)Erosion	(links	|	edit)Geology	(links	|	edit)Galilean	moons	(links	|	edit)Giant	planet	(links	|	edit)Galileo	project	(links	|	edit)Interplanetary	spaceflight	(links	|	edit)Kuiper	belt	(links	|	edit)Human	spaceflight	(links	|	edit)Moon	(links	|	edit)Mercury
(planet)	(links	|	edit)Meteorite	(links	|	edit)Near-Earth	object	(links	|	edit)Oort	cloud	(links	|	edit)Olympus	Mons	(links	|	edit)Planet	(links	|	edit)Planets	beyond	Neptune	(links	|	edit)Plutino	(links	|	edit)Planetary	nomenclature	(links	|	edit)Ring	system	(links	|	edit)Plate	tectonics	(links	|	edit)Ruthenium	(links	|	edit)Sun	(links	|	edit)Solar	System	(links	|
edit)Space	exploration	(links	|	edit)Space	colonization	(links	|	edit)Trans-Neptunian	object	(links	|	edit)Jupiter	trojan	(links	|	edit)Tau	Ceti	(links	|	edit)Venus	(links	|	edit)Zodiacal	light	(links	|	edit)1800s	(decade)	(links	|	edit)1807	(links	|	edit)433	Eros	(links	|	edit)NEAR	Shoemaker	(links	|	edit)Ion	thruster	(links	|	edit)Jupiter	(links	|	edit)Geochemistry
(links	|	edit)Callisto	(moon)	(links	|	edit)Europa	(moon)	(links	|	edit)List	of	hypothetical	Solar	System	objects	(links	|	edit)Basalt	(links	|	edit)Vulcan	(hypothetical	planet)	(links	|	edit)Triton	(moon)	(links	|	edit)Pluto	(links	|	edit)View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)Retrieved	from	"	WhatLinksHere/4_Vesta"Enjoy	sharper	detail,	more
accurate	color,	lifelike	lighting,	believable	backgrounds,	and	more	with	our	new	model	update.	Your	generated	images	will	be	more	polished	thanever.See	What's	NewExplore	how	consumers	want	to	see	climate	stories	told	today,	and	what	that	means	for	yourvisuals.Download	Our	Latest	VisualGPS	ReportData-backed	trends.	Generative	AI	demos.
Answers	to	your	usage	rights	questions.	Our	original	video	podcast	covers	it	allnow	ondemand.Watch	NowEnjoy	sharper	detail,	more	accurate	color,	lifelike	lighting,	believable	backgrounds,	and	more	with	our	new	model	update.	Your	generated	images	will	be	more	polished	thanever.See	What's	NewExplore	how	consumers	want	to	see	climate	stories
told	today,	and	what	that	means	for	yourvisuals.Download	Our	Latest	VisualGPS	ReportData-backed	trends.	Generative	AI	demos.	Answers	to	your	usage	rights	questions.	Our	original	video	podcast	covers	it	allnow	ondemand.Watch	NowEnjoy	sharper	detail,	more	accurate	color,	lifelike	lighting,	believable	backgrounds,	and	more	with	our	new	model
update.	Your	generated	images	will	be	more	polished	thanever.See	What's	NewExplore	how	consumers	want	to	see	climate	stories	told	today,	and	what	that	means	for	yourvisuals.Download	Our	Latest	VisualGPS	ReportData-backed	trends.	Generative	AI	demos.	Answers	to	your	usage	rights	questions.	Our	original	video	podcast	covers	it	allnow
ondemand.Watch	Now	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,
provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You
may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the
permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Computer	science	conceptThis	article	is	about	type	systems	in	computer	programming.	For	the	formal	study	of	type	systems,	see	Type	theory.This	article	includes	a	list	of	general	references,	but	it
lacks	sufficient	corresponding	inline	citations.	Please	help	to	improve	this	article	by	introducing	more	precise	citations.	(October	2010)	(Learn	how	and	when	to	remove	this	message)This	article	is	written	like	a	personal	reflection,	personal	essay,	or	argumentative	essay	that	states	a	Wikipedia	editor's	personal	feelings	or	presents	an	original
argument	about	a	topic.	Please	help	improve	it	by	rewriting	it	in	an	encyclopedic	style.	(July	2016)	(Learn	how	and	when	to	remove	this	message)Type	systemsGeneral	conceptsType	safetyStrong	vs.	weak	typingMajor	categoriesStatic	vs.	dynamicManifest	vs.	inferredNominal	vs.	structuralDuck	typingMinor	categoriesAbstractDependentFlow-
sensitiveGradualIntersectionLatentRefinementSubstructuralUniqueSessionvteIn	computer	programming,	a	type	system	is	a	logical	system	comprising	a	set	of	rules	that	assigns	a	property	called	a	type	(for	example,	integer,	floating	point,	string)	to	every	term	(a	word,	phrase,	or	other	set	of	symbols).	Usually	the	terms	are	various	language	constructs
of	a	computer	program,	such	as	variables,	expressions,	functions,	or	modules.[1]	A	type	system	dictates	the	operations	that	can	be	performed	on	a	term.	For	variables,	the	type	system	determines	the	allowed	values	of	that	term.	Type	systems	formalize	and	enforce	the	otherwise	implicit	categories	the	programmer	uses	for	algebraic	data	types,	data
structures,	or	other	data	types,	such	as	"string",	"array	of	float",	"function	returning	boolean".Type	systems	are	often	specified	as	part	of	programming	languages	and	built	into	interpreters	and	compilers,	although	the	type	system	of	a	language	can	be	extended	by	optional	tools	that	perform	added	checks	using	the	language's	original	type	syntax	and
grammar.	The	main	purpose	of	a	type	system	in	a	programming	language	is	to	reduce	possibilities	for	bugs	in	computer	programs	due	to	type	errors.[2]	The	given	type	system	in	question	determines	what	constitutes	a	type	error,	but	in	general,	the	aim	is	to	prevent	operations	expecting	a	certain	kind	of	value	from	being	used	with	values	of	which	that
operation	does	not	make	sense	(validity	errors).	Type	systems	allow	defining	interfaces	between	different	parts	of	a	computer	program,	and	then	checking	that	the	parts	have	been	connected	in	a	consistent	way.	This	checking	can	happen	statically	(at	compile	time),	dynamically	(at	run	time),	or	as	a	combination	of	both.	Type	systems	have	other
purposes	as	well,	such	as	expressing	business	rules,	enabling	certain	compiler	optimizations,	allowing	for	multiple	dispatch,	and	providing	a	form	of	documentation.An	example	of	a	simple	type	system	is	that	of	the	C	language.	The	portions	of	a	C	program	are	the	function	definitions.	One	function	is	invoked	by	another	function.	The	interface	of	a
function	states	the	name	of	the	function	and	a	list	of	parameters	that	are	passed	to	the	function's	code.	The	code	of	an	invoking	function	states	the	name	of	the	invoked,	along	with	the	names	of	variables	that	hold	values	to	pass	to	it.	During	a	computer	program's	execution,	the	values	are	placed	into	temporary	storage,	then	execution	jumps	to	the
code	of	the	invoked	function.	The	invoked	function's	code	accesses	the	values	and	makes	use	of	them.	If	the	instructions	inside	the	function	are	written	with	the	assumption	of	receiving	an	integer	value,	but	the	calling	code	passed	a	floating-point	value,	then	the	wrong	result	will	be	computed	by	the	invoked	function.	The	C	compiler	checks	the	types
of	the	arguments	passed	to	a	function	when	it	is	called	against	the	types	of	the	parameters	declared	in	the	function's	definition.	If	the	types	do	not	match,	the	compiler	throws	a	compile-time	error	or	warning.A	compiler	may	also	use	the	static	type	of	a	value	to	optimize	the	storage	it	needs	and	the	choice	of	algorithms	for	operations	on	the	value.	In
many	C	compilers	the	float	data	type,	for	example,	is	represented	in	32	bits,	in	accord	with	the	IEEE	specification	for	single-precision	floating	point	numbers.	They	will	thus	use	floating-point-specific	microprocessor	operations	on	those	values	(floating-point	addition,	multiplication,	etc.).The	depth	of	type	constraints	and	the	manner	of	their	evaluation
affect	the	typing	of	the	language.	A	programming	language	may	further	associate	an	operation	with	various	resolutions	for	each	type,	in	the	case	of	type	polymorphism.	Type	theory	is	the	study	of	type	systems.	The	concrete	types	of	some	programming	languages,	such	as	integers	and	strings,	depend	on	practical	issues	of	computer	architecture,
compiler	implementation,	and	language	design.Formally,	type	theory	studies	type	systems.	A	programming	language	must	have	the	opportunity	to	type	check	using	the	type	system	whether	at	compile	time	or	runtime,	manually	annotated	or	automatically	inferred.	As	Mark	Manasse	concisely	put	it:[3]The	fundamental	problem	addressed	by	a	type
theory	is	to	ensure	that	programs	have	meaning.	The	fundamental	problem	caused	by	a	type	theory	is	that	meaningful	programs	may	not	have	meanings	ascribed	to	them.	The	quest	for	richer	type	systems	results	from	this	tension.Assigning	a	data	type,	termed	typing,	gives	meaning	to	a	sequence	of	bits	such	as	a	value	in	memory	or	some	object	such
as	a	variable.	The	hardware	of	a	general	purpose	computer	is	unable	to	discriminate	between	for	example	a	memory	address	and	an	instruction	code,	or	between	a	character,	an	integer,	or	a	floating-point	number,	because	it	makes	no	intrinsic	distinction	between	any	of	the	possible	values	that	a	sequence	of	bits	might	mean.[note	1]	Associating	a
sequence	of	bits	with	a	type	conveys	that	meaning	to	the	programmable	hardware	to	form	a	symbolic	system	composed	of	that	hardware	and	some	program.A	program	associates	each	value	with	at	least	one	specific	type,	but	it	also	can	occur	that	one	value	is	associated	with	many	subtypes.	Other	entities,	such	as	objects,	modules,	communication
channels,	and	dependencies	can	become	associated	with	a	type.	Even	a	type	can	become	associated	with	a	type.	An	implementation	of	a	type	system	could	in	theory	associate	identifications	called	data	type	(a	type	of	a	value),	class	(a	type	of	an	object),	and	kind	(a	type	of	a	type,	or	metatype).	These	are	the	abstractions	that	typing	can	go	through,	on	a
hierarchy	of	levels	contained	in	a	system.When	a	programming	language	evolves	a	more	elaborate	type	system,	it	gains	a	more	finely	grained	rule	set	than	basic	type	checking,	but	this	comes	at	a	price	when	the	type	inferences	(and	other	properties)	become	undecidable,	and	when	more	attention	must	be	paid	by	the	programmer	to	annotate	code	or
to	consider	computer-related	operations	and	functioning.	It	is	challenging	to	find	a	sufficiently	expressive	type	system	that	satisfies	all	programming	practices	in	a	type	safe	manner.A	programming	language	compiler	can	also	implement	a	dependent	type	or	an	effect	system,	which	enables	even	more	program	specifications	to	be	verified	by	a	type
checker.	Beyond	simple	value-type	pairs,	a	virtual	"region"	of	code	is	associated	with	an	"effect"	component	describing	what	is	being	done	with	what,	and	enabling	for	example	to	"throw"	an	error	report.	Thus	the	symbolic	system	may	be	a	type	and	effect	system,	which	endows	it	with	more	safety	checking	than	type	checking	alone.Whether	automated
by	the	compiler	or	specified	by	a	programmer,	a	type	system	renders	program	behavior	illegal	if	it	falls	outside	the	type-system	rules.	Advantages	provided	by	programmer-specified	type	systems	include:Abstraction	(or	modularity)	Types	enable	programmers	to	think	at	a	higher	level	than	the	bit	or	byte,	not	bothering	with	low-level	implementation.
For	example,	programmers	can	begin	to	think	of	a	string	as	a	set	of	character	values	instead	of	as	an	array	of	bytes.	Higher	still,	types	enable	programmers	to	think	about	and	express	interfaces	between	two	of	any-sized	subsystems.	This	enables	more	levels	of	localization	so	that	the	definitions	required	for	interoperability	of	the	subsystems	remain
consistent	when	those	two	subsystems	communicate.Documentation	In	more	expressive	type	systems,	types	can	serve	as	a	form	of	documentation	clarifying	the	intent	of	the	programmer.	For	example,	if	a	programmer	declares	a	function	as	returning	a	timestamp	type,	this	documents	the	function	when	the	timestamp	type	can	be	explicitly	declared
deeper	in	the	code	to	be	an	integer	type.Advantages	provided	by	compiler-specified	type	systems	include:Optimization	Static	type-checking	may	provide	useful	compile-time	information.	For	example,	if	a	type	requires	that	a	value	must	align	in	memory	at	a	multiple	of	four	bytes,	the	compiler	may	be	able	to	use	more	efficient	machine
instructions.Safety	A	type	system	enables	the	compiler	to	detect	meaningless	or	invalid	code.	For	example,	we	can	identify	an	expression	3	/	"Hello,	World"	as	invalid,	when	the	rules	do	not	specify	how	to	divide	an	integer	by	a	string.	Strong	typing	offers	more	safety,	but	cannot	guarantee	complete	type	safety.A	type	error	occurs	when	an	operation
receives	a	different	type	of	data	than	it	expected.[4]	For	example,	a	type	error	would	happen	if	a	line	of	code	divides	two	integers,	and	is	passed	a	string	of	letters	instead	of	an	integer.[4]	It	is	an	unintended	condition[note	2]	which	might	manifest	in	multiple	stages	of	a	program's	development.	Thus	a	facility	for	detection	of	the	error	is	needed	in	the
type	system.	In	some	languages,	such	as	Haskell,	for	which	type	inference	is	automated,	lint	might	be	available	to	its	compiler	to	aid	in	the	detection	of	error.Type	safety	contributes	to	program	correctness,	but	might	only	guarantee	correctness	at	the	cost	of	making	the	type	checking	itself	an	undecidable	problem	(as	in	the	halting	problem).	In	a	type
system	with	automated	type	checking,	a	program	may	prove	to	run	incorrectly	yet	produce	no	compiler	errors.	Division	by	zero	is	an	unsafe	and	incorrect	operation,	but	a	type	checker	which	only	runs	at	compile	time	does	not	scan	for	division	by	zero	in	most	languages;	that	division	would	surface	as	a	runtime	error.	To	prove	the	absence	of	these
defects,	other	kinds	of	formal	methods,	collectively	known	as	program	analyses,	are	in	common	use.	Alternatively,	a	sufficiently	expressive	type	system,	such	as	in	dependently	typed	languages,	can	prevent	these	kinds	of	errors	(for	example,	expressing	the	type	of	non-zero	numbers).	In	addition,	software	testing	is	an	empirical	method	for	finding
errors	that	such	a	type	checker	would	not	detect.The	process	of	verifying	and	enforcing	the	constraints	of	typestype	checkingmay	occur	at	compile	time	(a	static	check)	or	at	run-time	(a	dynamic	check).If	a	language	specification	requires	its	typing	rules	strongly,	more	or	less	allowing	only	those	automatic	type	conversions	that	do	not	lose	information,
one	can	refer	to	the	process	as	strongly	typed;	if	not,	as	weakly	typed.	The	terms	are	not	usually	used	in	a	strict	sense.See	also:	Category:Statically	typed	programming	languagesStatic	type	checking	is	the	process	of	verifying	the	type	safety	of	a	program	based	on	analysis	of	a	program's	text	(source	code).	If	a	program	passes	a	static	type	checker,
then	the	program	is	guaranteed	to	satisfy	some	set	of	type	safety	properties	for	all	possible	inputs.Static	type	checking	can	be	considered	a	limited	form	of	program	verification	(see	type	safety),	and	in	a	type-safe	language,	can	also	be	considered	an	optimization.	If	a	compiler	can	prove	that	a	program	is	well-typed,	then	it	does	not	need	to	emit
dynamic	safety	checks,	allowing	the	resulting	compiled	binary	to	run	faster	and	to	be	smaller.Static	type	checking	for	Turing-complete	languages	is	inherently	conservative.	That	is,	if	a	type	system	is	both	sound	(meaning	that	it	rejects	all	incorrect	programs)	and	decidable	(meaning	that	it	is	possible	to	write	an	algorithm	that	determines	whether	a
program	is	well-typed),	then	it	must	be	incomplete	(meaning	there	are	correct	programs,	which	are	also	rejected,	even	though	they	do	not	encounter	runtime	errors).[7]	For	example,	consider	a	program	containing	the	code:if	then	else	Even	if	the	expression	always	evaluates	to	true	at	run-time,	most	type	checkers	will	reject	the	program	as	ill-typed,
because	it	is	difficult	(if	not	impossible)	for	a	static	analyzer	to	determine	that	the	else	branch	will	not	be	taken.[8]	Consequently,	a	static	type	checker	will	quickly	detect	type	errors	in	rarely	used	code	paths.	Without	static	type	checking,	even	code	coverage	tests	with	100%	coverage	may	be	unable	to	find	such	type	errors.	The	tests	may	fail	to	detect
such	type	errors,	because	the	combination	of	all	places	where	values	are	created	and	all	places	where	a	certain	value	is	used	must	be	taken	into	account.A	number	of	useful	and	common	programming	language	features	cannot	be	checked	statically,	such	as	downcasting.	Thus,	many	languages	will	have	both	static	and	dynamic	type	checking;	the	static
type	checker	verifies	what	it	can,	and	dynamic	checks	verify	the	rest.Many	languages	with	static	type	checking	provide	a	way	to	bypass	the	type	checker.	Some	languages	allow	programmers	to	choose	between	static	and	dynamic	type	safety.	For	example,	historically	C#	declares	variables	statically,[9]:77,Section	3.2	but	C#	4.0	introduces	the
dynamic	keyword,	which	is	used	to	declare	variables	to	be	checked	dynamically	at	runtime.[9]:117,Section	4.1	Other	languages	allow	writing	code	that	is	not	type-safe;	for	example,	in	C,	programmers	can	freely	cast	a	value	between	any	two	types	that	have	the	same	size,	effectively	subverting	the	type	concept.See	also:	Dynamic	programming
language,	Interpreted	language,	and	Category:Dynamically	typed	programming	languagesDynamic	type	checking	is	the	process	of	verifying	the	type	safety	of	a	program	at	runtime.	Implementations	of	dynamically	type-checked	languages	generally	associate	each	runtime	object	with	a	type	tag	(i.e.,	a	reference	to	a	type)	containing	its	type
information.	This	runtime	type	information	(RTTI)	can	also	be	used	to	implement	dynamic	dispatch,	late	binding,	downcasting,	reflective	programming	(reflection),	and	similar	features.Most	type-safe	languages	include	some	form	of	dynamic	type	checking,	even	if	they	also	have	a	static	type	checker.[10]	The	reason	for	this	is	that	many	useful	features
or	properties	are	difficult	or	impossible	to	verify	statically.	For	example,	suppose	that	a	program	defines	two	types,	A	and	B,	where	B	is	a	subtype	of	A.	If	the	program	tries	to	convert	a	value	of	type	A	to	type	B,	which	is	known	as	downcasting,	then	the	operation	is	legal	only	if	the	value	being	converted	is	actually	a	value	of	type	B.	Thus,	a	dynamic
check	is	needed	to	verify	that	the	operation	is	safe.	This	requirement	is	one	of	the	criticisms	of	downcasting.By	definition,	dynamic	type	checking	may	cause	a	program	to	fail	at	runtime.	In	some	programming	languages,	it	is	possible	to	anticipate	and	recover	from	these	failures.	In	others,	type-checking	errors	are	considered	fatal.Programming
languages	that	include	dynamic	type	checking	but	not	static	type	checking	are	often	called	"dynamically	typed	programming	languages"."Type	hinting"	redirects	here.	For	hinting	of	typefaces,	see	font	hinting.	Certain	languages	allow	both	static	and	dynamic	typing.	For	example,	Java	and	some	other	ostensibly	statically	typed	languages	support
downcasting	types	to	their	subtypes,	querying	an	object	to	discover	its	dynamic	type	and	other	type	operations	that	depend	on	runtime	type	information.	Another	example	is	C++	RTTI.	More	generally,	most	programming	languages	include	mechanisms	for	dispatching	over	different	'kinds'	of	data,	such	as	disjoint	unions,	runtime	polymorphism,	and
variant	types.	Even	when	not	interacting	with	type	annotations	or	type	checking,	such	mechanisms	are	materially	similar	to	dynamic	typing	implementations.	See	programming	language	for	more	discussion	of	the	interactions	between	static	and	dynamic	typing.Objects	in	object-oriented	languages	are	usually	accessed	by	a	reference	whose	static
target	type	(or	manifest	type)	is	equal	to	either	the	object's	run-time	type	(its	latent	type)	or	a	supertype	thereof.	This	is	conformant	with	the	Liskov	substitution	principle,	which	states	that	all	operations	performed	on	an	instance	of	a	given	type	can	also	be	performed	on	an	instance	of	a	subtype.	This	concept	is	also	known	as	subsumption	or	subtype
polymorphism.	In	some	languages	subtypes	may	also	possess	covariant	or	contravariant	return	types	and	argument	types	respectively.Certain	languages,	for	example	Clojure,	Common	Lisp,	or	Cython	are	dynamically	type	checked	by	default,	but	allow	programs	to	opt	into	static	type	checking	by	providing	optional	annotations.	One	reason	to	use	such
hints	would	be	to	optimize	the	performance	of	critical	sections	of	a	program.	This	is	formalized	by	gradual	typing.	The	programming	environment	DrRacket,	a	pedagogic	environment	based	on	Lisp,	and	a	precursor	of	the	language	Racket	is	also	soft-typed.[11]Conversely,	as	of	version	4.0,	the	C#	language	provides	a	way	to	indicate	that	a	variable
should	not	be	statically	type	checked.	A	variable	whose	type	is	dynamic	will	not	be	subject	to	static	type	checking.	Instead,	the	program	relies	on	runtime	type	information	to	determine	how	the	variable	may	be	used.[12][9]:113119In	Rust,	the	dyn	std::any::Any	type	provides	dynamic	typing	of	'static	types.[13]The	choice	between	static	and	dynamic
typing	requires	certain	trade-offs.Static	typing	can	find	type	errors	reliably	at	compile	time,	which	increases	the	reliability	of	the	delivered	program.	However,	programmers	disagree	over	how	commonly	type	errors	occur,	resulting	in	further	disagreements	over	the	proportion	of	those	bugs	that	are	coded	that	would	be	caught	by	appropriately
representing	the	designed	types	in	code.[14][15]	Static	typing	advocates[who?]	believe	programs	are	more	reliable	when	they	have	been	well	type-checked,	whereas	dynamic-typing	advocates[who?]	point	to	distributed	code	that	has	proven	reliable	and	to	small	bug	databases.[citation	needed]	The	value	of	static	typing	increases	as	the	strength	of	the
type	system	is	increased.	Advocates	of	dependent	typing,[who?]	implemented	in	languages	such	as	Dependent	ML	and	Epigram,	have	suggested	that	almost	all	bugs	can	be	considered	type	errors,	if	the	types	used	in	a	program	are	properly	declared	by	the	programmer	or	correctly	inferred	by	the	compiler.[16]Static	typing	usually	results	in	compiled
code	that	executes	faster.	When	the	compiler	knows	the	exact	data	types	that	are	in	use	(which	is	necessary	for	static	verification,	either	through	declaration	or	inference)	it	can	produce	optimized	machine	code.	Some	dynamically	typed	languages	such	as	Common	Lisp	allow	optional	type	declarations	for	optimization	for	this	reason.By	contrast,
dynamic	typing	may	allow	compilers	to	run	faster	and	interpreters	to	dynamically	load	new	code,	because	changes	to	source	code	in	dynamically	typed	languages	may	result	in	less	checking	to	perform	and	less	code	to	revisit.[clarification	needed]	This	too	may	reduce	the	edit-compile-test-debug	cycle.Statically	typed	languages	that	lack	type	inference
(such	as	C	and	Java	prior	to	version	10)	require	that	programmers	declare	the	types	that	a	method	or	function	must	use.	This	can	serve	as	added	program	documentation,	that	is	active	and	dynamic,	instead	of	static.	This	allows	a	compiler	to	prevent	it	from	drifting	out	of	synchrony,	and	from	being	ignored	by	programmers.	However,	a	language	can
be	statically	typed	without	requiring	type	declarations	(examples	include	Haskell,	Scala,	OCaml,	F#,	Swift,	and	to	a	lesser	extent	C#	and	C++),	so	explicit	type	declaration	is	not	a	necessary	requirement	for	static	typing	in	all	languages.Dynamic	typing	allows	constructs	that	some	(simple)	static	type	checking	would	reject	as	illegal.	For	example,	eval
functions,	which	execute	arbitrary	data	as	code,	become	possible.	An	eval	function	is	possible	with	static	typing,	but	requires	advanced	uses	of	algebraic	data	types.	Further,	dynamic	typing	better	accommodates	transitional	code	and	prototyping,	such	as	allowing	a	placeholder	data	structure	(mock	object)	to	be	transparently	used	in	place	of	a	full
data	structure	(usually	for	the	purposes	of	experimentation	and	testing).Dynamic	typing	typically	allows	duck	typing	(which	enables	easier	code	reuse).	Many[specify]	languages	with	static	typing	also	feature	duck	typing	or	other	mechanisms	like	generic	programming	that	also	enable	easier	code	reuse.Dynamic	typing	typically	makes
metaprogramming	easier	to	use.	For	example,	C++	templates	are	typically	more	cumbersome	to	write	than	the	equivalent	Ruby	or	Python	code	since	C++	has	stronger	rules	regarding	type	definitions	(for	both	functions	and	variables).	This	forces	a	developer	to	write	more	boilerplate	code	for	a	template	than	a	Python	developer	would	need	to.	More
advanced	run-time	constructs	such	as	metaclasses	and	introspection	are	often	harder	to	use	in	statically	typed	languages.	In	some	languages,	such	features	may	also	be	used	e.g.	to	generate	new	types	and	behaviors	on	the	fly,	based	on	run-time	data.	Such	advanced	constructs	are	often	provided	by	dynamic	programming	languages;	many	of	these	are
dynamically	typed,	although	dynamic	typing	need	not	be	related	to	dynamic	programming	languages.Main	article:	Strong	and	weak	typingLanguages	are	often	colloquially	referred	to	as	strongly	typed	or	weakly	typed.	In	fact,	there	is	no	universally	accepted	definition	of	what	these	terms	mean.	In	general,	there	are	more	precise	terms	to	represent
the	differences	between	type	systems	that	lead	people	to	call	them	"strong"	or	"weak".Main	articles:	Type	safety	and	Memory	safetyA	third	way	of	categorizing	the	type	system	of	a	programming	language	is	by	the	safety	of	typed	operations	and	conversions.	Computer	scientists	use	the	term	type-safe	language	to	describe	languages	that	do	not	allow
operations	or	conversions	that	violate	the	rules	of	the	type	system.Computer	scientists	use	the	term	memory-safe	language	(or	just	safe	language)	to	describe	languages	that	do	not	allow	programs	to	access	memory	that	has	not	been	assigned	for	their	use.	For	example,	a	memory-safe	language	will	check	array	bounds,	or	else	statically	guarantee	(i.e.,
at	compile	time	before	execution)	that	array	accesses	out	of	the	array	boundaries	will	cause	compile-time	and	perhaps	runtime	errors.Consider	the	following	program	of	a	language	that	is	both	type-safe	and	memory-safe:[17]var	x:=	5;	var	y:=	"37";	var	z:=	x	+	y;In	this	example,	the	variable	z	will	have	the	value	42.	Although	this	may	not	be	what	the
programmer	anticipated,	it	is	a	well-defined	result.	If	y	were	a	different	string,	one	that	could	not	be	converted	to	a	number	(e.g.	"Hello	World"),	the	result	would	be	well-defined	as	well.	Note	that	a	program	can	be	type-safe	or	memory-safe	and	still	crash	on	an	invalid	operation.	This	is	for	languages	where	the	type	system	is	not	sufficiently	advanced
to	precisely	specify	the	validity	of	operations	on	all	possible	operands.	But	if	a	program	encounters	an	operation	that	is	not	type-safe,	terminating	the	program	is	often	the	only	option.Now	consider	a	similar	example	in	C:int	x	=	5;char	y[]	=	"37";char*	z	=	x	+	y;printf("%c",	*z);In	this	example	z	will	point	to	a	memory	address	five	characters	beyond	y,
equivalent	to	three	characters	after	the	terminating	zero	character	of	the	string	pointed	to	by	y.	This	is	memory	that	the	program	is	not	expected	to	access.	In	C	terms	this	is	simply	undefined	behaviour	and	the	program	may	do	anything;	with	a	simple	compiler	it	might	actually	print	whatever	byte	is	stored	after	the	string	"37".	As	this	example	shows,
C	is	not	memory-safe.	As	arbitrary	data	was	assumed	to	be	a	character,	it	is	also	not	a	type-safe	language.In	general,	type-safety	and	memory-safety	go	hand	in	hand.	For	example,	a	language	that	supports	pointer	arithmetic	and	number-to-pointer	conversions	(like	C)	is	neither	memory-safe	nor	type-safe,	because	it	allows	arbitrary	memory	to	be
accessed	as	if	it	were	valid	memory	of	any	type.Some	languages	allow	different	levels	of	checking	to	apply	to	different	regions	of	code.	Examples	include:The	use	strict	directive	in	JavaScript[18][19][20]	and	Perl	applies	stronger	checking.The	declare(strict_types=1)	in	PHP[21]	on	a	per-file	basis	allows	only	a	variable	of	exact	type	of	the	type
declaration	will	be	accepted,	or	a	TypeError	will	be	thrown.The	Option	Strict	On	in	VB.NET	allows	the	compiler	to	require	a	conversion	between	objects.Additional	tools	such	as	lint	and	IBM	Rational	Purify	can	also	be	used	to	achieve	a	higher	level	of	strictness.It	has	been	proposed,	chiefly	by	Gilad	Bracha,	that	the	choice	of	type	system	be	made
independent	of	choice	of	language;	that	a	type	system	should	be	a	module	that	can	be	plugged	into	a	language	as	needed.	He	believes	this	is	advantageous,	because	what	he	calls	mandatory	type	systems	make	languages	less	expressive	and	code	more	fragile.[22]	The	requirement	that	the	type	system	does	not	affect	the	semantics	of	the	language	is
difficult	to	fulfill.Optional	typing	is	related	to,	but	distinct	from,	gradual	typing.	While	both	typing	disciplines	can	be	used	to	perform	static	analysis	of	code	(static	typing),	optional	type	systems	do	not	enforce	type	safety	at	runtime	(dynamic	typing).[22][23]Main	article:	Polymorphism	(computer	science)The	term	polymorphism	refers	to	the	ability	of
code	(especially,	functions	or	classes)	to	act	on	values	of	multiple	types,	or	to	the	ability	of	different	instances	of	the	same	data	structure	to	contain	elements	of	different	types.	Type	systems	that	allow	polymorphism	generally	do	so	in	order	to	improve	the	potential	for	code	re-use:	in	a	language	with	polymorphism,	programmers	need	only	implement	a
data	structure	such	as	a	list	or	an	associative	array	once,	rather	than	once	for	each	type	of	element	with	which	they	plan	to	use	it.	For	this	reason	computer	scientists	sometimes	call	the	use	of	certain	forms	of	polymorphism	generic	programming.	The	type-theoretic	foundations	of	polymorphism	are	closely	related	to	those	of	abstraction,	modularity
and	(in	some	cases)	subtyping.Many	type	systems	have	been	created	that	are	specialized	for	use	in	certain	environments	with	certain	types	of	data,	or	for	out-of-band	static	program	analysis.	Frequently,	these	are	based	on	ideas	from	formal	type	theory	and	are	only	available	as	part	of	prototype	research	systems.The	following	table	gives	an	overview
over	type	theoretic	concepts	that	are	used	in	specialized	type	systems.The	names	M,	N,	O	range	over	terms	and	the	names	,	{\displaystyle	\sigma	,\tau	}	range	over	types.The	following	notation	will	be	used:	M	:	{\displaystyle	M:\sigma	}	means	that	M	{\displaystyle	M}	has	type	{\displaystyle	\sigma	}	;	M	(N)	{\displaystyle	M(N)}	is	that	application
of	M	{\displaystyle	M}	on	N	{\displaystyle	N}	;	[:=]	{\displaystyle	\tau	[\alpha	:=\sigma]}	(resp.	[x	:=	N]	{\displaystyle	\tau	[x:=N]})	describes	the	type	which	results	from	replacing	all	occurrences	of	the	type	variable	(resp.	term	variable	x)	in	{\displaystyle	\tau	}	by	the	type	(resp.	term	N).Type	notionNotationMeaningFunction	{\displaystyle
\sigma	\to	\tau	}	If	M	:	{\displaystyle	M:\sigma	\to	\tau	}	and	N	:	{\displaystyle	N:\sigma	}	,	then	M	(N)	:	{\displaystyle	M(N):\tau	}	.Product	{\displaystyle	\sigma	\times	\tau	}	If	M	:	{\displaystyle	M:\sigma	\times	\tau	}	,	then	M	=	(N	,	O)	{\displaystyle	M=(N,O)}	is	a	pair	s.t.	N	:	{\displaystyle	N:\sigma	}	and	O	:	{\displaystyle	O:\tau	}	.Sum	+
{\displaystyle	\sigma	+\tau	}	If	M	:	+	{\displaystyle	M:\sigma	+\tau	}	,	then	M	=	1	(N)	{\displaystyle	M=\iota	_{1}(N)}	is	the	first	injection	s.t.	N	:	{\displaystyle	N:\sigma	}	,	or	M	=	2	(N)	{\displaystyle	M=\iota	_{2}(N)}	is	the	second	injection	s.t.	N	:	{\displaystyle	N:\tau	}	.Intersection	{\displaystyle	\sigma	\cap	\tau	}	If	M	:	{\displaystyle	M:\sigma
\cap	\tau	}	,	then	M	:	{\displaystyle	M:\sigma	}	and	M	:	{\displaystyle	M:\tau	}	.Union	{\displaystyle	\sigma	\cup	\tau	}	If	M	:	{\displaystyle	M:\sigma	\cup	\tau	}	,	then	M	:	{\displaystyle	M:\sigma	}	or	M	:	{\displaystyle	M:\tau	}	.Record	x	:	{\displaystyle	\langle	x:\tau	\rangle	}	If	M	:	x	:	{\displaystyle	M:\langle	x:\tau	\rangle	}	,	then	M	has	a	member	x	:
{\displaystyle	x:\tau	}	.Polymorphic	.	{\displaystyle	\forall	{}\alpha	.\tau	}	If	M	:	.	{\displaystyle	M:\forall	{}\alpha	.\tau	}	,	then	M	:	[:=]	{\displaystyle	M:\tau	[\alpha	:=\sigma]}	for	any	type	.Existential	.	{\displaystyle	\exists	{}\alpha	.\tau	}	If	M	:	.	{\displaystyle	M:\exists	{}\alpha	.\tau	}	,	then	M	:	[:=]	{\displaystyle	M:\tau	[\alpha	:=\sigma]}	for
some	type	.Recursive	.	{\displaystyle	\mu	\alpha	.\tau	}	If	M	:	.	{\displaystyle	M:\mu	\alpha	.\tau	}	,	then	M	:	[:=	.]	{\displaystyle	M:\tau	[\alpha	:=\mu	\alpha	.\tau]}	.Dependent	function[a]	(x	:)	{\displaystyle	(x:\sigma)\to	\tau	}	If	M	:	(x	:)	{\displaystyle	M:(x:\sigma)\to	\tau	}	and	N	:	{\displaystyle	N:\sigma	}	,	then	M	(N)	:	[x	:=	N]	{\displaystyle
M(N):\tau	[x:=N]}	.Dependent	pair[b]	(x	:)	{\displaystyle	(x:\sigma)\times	\tau	}	If	M	:	(x	:)	{\displaystyle	M:(x:\sigma)\times	\tau	}	,	then	M	=	(N	,	O)	{\displaystyle	M=(N,O)}	is	a	pair	s.t.	N	:	{\displaystyle	N:\sigma	}	and	O	:	[x	:=	N]	{\displaystyle	O:\tau	[x:=N]}	.Dependent	intersection[24]	(x	:)	{\displaystyle	(x:\sigma)\cap	\tau	}	If	M	:	(x	:)
{\displaystyle	M:(x:\sigma)\cap	\tau	}	,	then	M	:	{\displaystyle	M:\sigma	}	and	M	:	[x	:=	M]	{\displaystyle	M:\tau	[x:=M]}	.Familial	intersection[24]	x	:	{\displaystyle	\bigcap	_{x:\sigma	}\tau	}	If	M	:	x	:	{\textstyle	M:\bigcap	_{x:\sigma	}\tau	}	,	then	M	:	[x	:=	N]	{\displaystyle	M:\tau	[x:=N]}	for	any	term	N	:	{\displaystyle	N:\sigma	}	.Familial

union[24]	x	:	{\displaystyle	\bigcup	_{x:\sigma	}\tau	}	If	M	:	x	:	{\textstyle	M:\bigcup	_{x:\sigma	}\tau	}	,	then	M	:	[x	:=	N]	{\displaystyle	M:\tau	[x:=N]}	for	some	term	N	:	{\displaystyle	N:\sigma	}	.^	Also	referred	to	as	dependent	product	type,	since	(x	:)	=	x	:	{\textstyle	(x:\sigma)\to	\tau	=\prod	_{x:\sigma	}\tau	}	.^	Also	referred	to	as	dependent
sum	type,	since	(x	:)	=	x	:	{\textstyle	(x:\sigma)\times	\tau	=\sum	_{x:\sigma	}\tau	}	.Main	article:	Dependent	typeDependent	types	are	based	on	the	idea	of	using	scalars	or	values	to	more	precisely	describe	the	type	of	some	other	value.	For	example,	m	a	t	r	i	x	(3	,	3)	{\displaystyle	\mathrm	{matrix}	(3,3)}	might	be	the	type	of	a	3	3	{\displaystyle
3\times	3}	matrix.	We	can	then	define	typing	rules	such	as	the	following	rule	for	matrix	multiplication:	m	a	t	r	i	x	m	u	l	t	i	p	l	y	:	m	a	t	r	i	x	(k	,	m)	m	a	t	r	i	x	(m	,	n)	m	a	t	r	i	x	(k	,	n)	{\displaystyle	\mathrm	{matrix}	_{\mathrm	{multiply}	}:\mathrm	{matrix}	(k,m)\times	\mathrm	{matrix}	(m,n)\to	\mathrm	{matrix}	(k,n)}	where	k,	m,	n	are	arbitrary
positive	integer	values.	A	variant	of	ML	called	Dependent	ML	has	been	created	based	on	this	type	system,	but	because	type	checking	for	conventional	dependent	types	is	undecidable,	not	all	programs	using	them	can	be	type-checked	without	some	kind	of	limits.	Dependent	ML	limits	the	sort	of	equality	it	can	decide	to	Presburger	arithmetic.Other
languages	such	as	Epigram	make	the	value	of	all	expressions	in	the	language	decidable	so	that	type	checking	can	be	decidable.	However,	in	general	proof	of	decidability	is	undecidable,	so	many	programs	require	hand-written	annotations	that	may	be	very	non-trivial.	As	this	impedes	the	development	process,	many	language	implementations	provide
an	easy	way	out	in	the	form	of	an	option	to	disable	this	condition.	This,	however,	comes	at	the	cost	of	making	the	type-checker	run	in	an	infinite	loop	when	fed	programs	that	do	not	type-check,	causing	the	compilation	to	fail.Main	article:	Linear	typeLinear	types,	based	on	the	theory	of	linear	logic,	and	closely	related	to	uniqueness	types,	are	types
assigned	to	values	having	the	property	that	they	have	one	and	only	one	reference	to	them	at	all	times.	These	are	valuable	for	describing	large	immutable	values	such	as	files,	strings,	and	so	on,	because	any	operation	that	simultaneously	destroys	a	linear	object	and	creates	a	similar	object	(such	as	str	=	str	+	"a")	can	be	optimized	"under	the	hood"	into
an	in-place	mutation.	Normally	this	is	not	possible,	as	such	mutations	could	cause	side	effects	on	parts	of	the	program	holding	other	references	to	the	object,	violating	referential	transparency.	They	are	also	used	in	the	prototype	operating	system	Singularity	for	interprocess	communication,	statically	ensuring	that	processes	cannot	share	objects	in
shared	memory	in	order	to	prevent	race	conditions.	The	Clean	language	(a	Haskell-like	language)	uses	this	type	system	in	order	to	gain	a	lot	of	speed	(compared	to	performing	a	deep	copy)	while	remaining	safe.Main	article:	Intersection	typeIntersection	types	are	types	describing	values	that	belong	to	both	of	two	other	given	types	with	overlapping
value	sets.	For	example,	in	most	implementations	of	C	the	signed	char	has	range	-128	to	127	and	the	unsigned	char	has	range	0	to	255,	so	the	intersection	type	of	these	two	types	would	have	range	0	to	127.	Such	an	intersection	type	could	be	safely	passed	into	functions	expecting	either	signed	or	unsigned	chars,	because	it	is	compatible	with	both
types.Intersection	types	are	useful	for	describing	overloaded	function	types:	for	example,	if	"int	int"	is	the	type	of	functions	taking	an	integer	argument	and	returning	an	integer,	and	"float	float"	is	the	type	of	functions	taking	a	float	argument	and	returning	a	float,	then	the	intersection	of	these	two	types	can	be	used	to	describe	functions	that	do	one	or
the	other,	based	on	what	type	of	input	they	are	given.	Such	a	function	could	be	passed	into	another	function	expecting	an	"int	int"	function	safely;	it	simply	would	not	use	the	"float	float"	functionality.In	a	subclassing	hierarchy,	the	intersection	of	a	type	and	an	ancestor	type	(such	as	its	parent)	is	the	most	derived	type.	The	intersection	of	sibling	types
is	empty.The	Forsythe	language	includes	a	general	implementation	of	intersection	types.	A	restricted	form	is	refinement	types.Main	article:	Union	typeUnion	types	are	types	describing	values	that	belong	to	either	of	two	types.	For	example,	in	C,	the	signed	char	has	a	-128	to	127	range,	and	the	unsigned	char	has	a	0	to	255	range,	so	the	union	of	these
two	types	would	have	an	overall	"virtual"	range	of	-128	to	255	that	may	be	used	partially	depending	on	which	union	member	is	accessed.	Any	function	handling	this	union	type	would	have	to	deal	with	integers	in	this	complete	range.	More	generally,	the	only	valid	operations	on	a	union	type	are	operations	that	are	valid	on	both	types	being	unioned.	C's
"union"	concept	is	similar	to	union	types,	but	is	not	typesafe,	as	it	permits	operations	that	are	valid	on	either	type,	rather	than	both.	Union	types	are	important	in	program	analysis,	where	they	are	used	to	represent	symbolic	values	whose	exact	nature	(e.g.,	value	or	type)	is	not	known.In	a	subclassing	hierarchy,	the	union	of	a	type	and	an	ancestor	type
(such	as	its	parent)	is	the	ancestor	type.	The	union	of	sibling	types	is	a	subtype	of	their	common	ancestor	(that	is,	all	operations	permitted	on	their	common	ancestor	are	permitted	on	the	union	type,	but	they	may	also	have	other	valid	operations	in	common).Main	article:	Existential	quantifierExistential	types	are	frequently	used	in	connection	with
record	types	to	represent	modules	and	abstract	data	types,	due	to	their	ability	to	separate	implementation	from	interface.	For	example,	the	type	"T	=	X	{	a:	X;	f:	(X	int);	}"	describes	a	module	interface	that	has	a	data	member	named	a	of	type	X	and	a	function	named	f	that	takes	a	parameter	of	the	same	type	X	and	returns	an	integer.	This	could	be
implemented	in	different	ways;	for	example:intT	=	{	a:	int;	f:	(int	int);	}floatT	=	{	a:	float;	f:	(float	int);	}These	types	are	both	subtypes	of	the	more	general	existential	type	T	and	correspond	to	concrete	implementation	types,	so	any	value	of	one	of	these	types	is	a	value	of	type	T.	Given	a	value	"t"	of	type	"T",	we	know	that	"t.f(t.a)"	is	well-typed,
regardless	of	what	the	abstract	type	X	is.	This	gives	flexibility	for	choosing	types	suited	to	a	particular	implementation,	while	clients	that	use	only	values	of	the	interface	typethe	existential	typeare	isolated	from	these	choices.In	general	it's	impossible	for	the	typechecker	to	infer	which	existential	type	a	given	module	belongs	to.	In	the	above	example
intT	{	a:	int;	f:	(int	int);	}	could	also	have	the	type	X	{	a:	X;	f:	(int	int);	}.	The	simplest	solution	is	to	annotate	every	module	with	its	intended	type,	e.g.:intT	=	{	a:	int;	f:	(int	int);	}	as	X	{	a:	X;	f:	(X	int);	}Although	abstract	data	types	and	modules	had	been	implemented	in	programming	languages	for	quite	some	time,	it	wasn't	until	1988	that	John	C.
Mitchell	and	Gordon	Plotkin	established	the	formal	theory	under	the	slogan:	"Abstract	[data]	types	have	existential	type".[25]	The	theory	is	a	second-order	typed	lambda	calculus	similar	to	System	F,	but	with	existential	instead	of	universal	quantification.Main	article:	Gradual	typingIn	a	type	system	with	Gradual	typing,	variables	may	be	assigned	a
type	either	at	compile-time	(which	is	static	typing),	or	at	run-time	(which	is	dynamic	typing).[26]	This	allows	software	developers	to	choose	either	type	paradigm	as	appropriate,	from	within	a	single	language.[26]	Gradual	typing	uses	a	special	type	named	dynamic	to	represent	statically	unknown	types;	gradual	typing	replaces	the	notion	of	type
equality	with	a	new	relation	called	consistency	that	relates	the	dynamic	type	to	every	other	type.	The	consistency	relation	is	symmetric	but	not	transitive.[27]Further	information:	Type	inferenceMany	static	type	systems,	such	as	those	of	C	and	Java,	require	type	declarations:	the	programmer	must	explicitly	associate	each	variable	with	a	specific	type.
Others,	such	as	Haskell's,	perform	type	inference:	the	compiler	draws	conclusions	about	the	types	of	variables	based	on	how	programmers	use	those	variables.	For	example,	given	a	function	f(x,	y)	that	adds	x	and	y	together,	the	compiler	can	infer	that	x	and	y	must	be	numberssince	addition	is	only	defined	for	numbers.	Thus,	any	call	to	f	elsewhere	in
the	program	that	specifies	a	non-numeric	type	(such	as	a	string	or	list)	as	an	argument	would	signal	an	error.Numerical	and	string	constants	and	expressions	in	code	can	and	often	do	imply	type	in	a	particular	context.	For	example,	an	expression	3.14	might	imply	a	type	of	floating-point,	while	[1,	2,	3]	might	imply	a	list	of	integerstypically	an
array.Type	inference	is	in	general	possible,	if	it	is	computable	in	the	type	system	in	question.	Moreover,	even	if	inference	is	not	computable	in	general	for	a	given	type	system,	inference	is	often	possible	for	a	large	subset	of	real-world	programs.	Haskell's	type	system,	a	version	of	HindleyMilner,	is	a	restriction	of	System	F	to	so-called	rank-1
polymorphic	types,	in	which	type	inference	is	computable.	Most	Haskell	compilers	allow	arbitrary-rank	polymorphism	as	an	extension,	but	this	makes	type	inference	not	computable.	(Type	checking	is	decidable,	however,	and	rank-1	programs	still	have	type	inference;	higher	rank	polymorphic	programs	are	rejected	unless	given	explicit	type
annotations.)Main	article:	Type	theory	Decision	problemsA	type	system	that	assigns	types	to	terms	in	type	environments	using	typing	rules	is	naturally	associated	with	the	decision	problems	of	type	checking,	typability,	and	type	inhabitation.[28]Given	a	type	environment	{\displaystyle	\Gamma	}	,	a	term	e	{\displaystyle	e}	,	and	a	type	{\displaystyle
\tau	}	,	decide	whether	the	term	e	{\displaystyle	e}	can	be	assigned	the	type	{\displaystyle	\tau	}	in	the	type	environment.Given	a	term	e	{\displaystyle	e}	,	decide	whether	there	exists	a	type	environment	{\displaystyle	\Gamma	}	and	a	type	{\displaystyle	\tau	}	such	that	the	term	e	{\displaystyle	e}	can	be	assigned	the	type	{\displaystyle	\tau	}	in	the
type	environment	{\displaystyle	\Gamma	}	.Given	a	type	environment	{\displaystyle	\Gamma	}	and	a	type	{\displaystyle	\tau	}	,	decide	whether	there	exists	a	term	e	{\displaystyle	e}	that	can	be	assigned	the	type	{\displaystyle	\tau	}	in	the	type	environment.Some	languages	like	C#	or	Scala	have	a	unified	type	system.[29]	This	means	that	all	C#	types
including	primitive	types	inherit	from	a	single	root	object.	Every	type	in	C#	inherits	from	the	Object	class.	Some	languages,	like	Java	and	Raku,	have	a	root	type	but	also	have	primitive	types	that	are	not	objects.[30]	Java	provides	wrapper	object	types	that	exist	together	with	the	primitive	types	so	developers	can	use	either	the	wrapper	object	types	or
the	simpler	non-object	primitive	types.	Raku	automatically	converts	primitive	types	to	objects	when	their	methods	are	accessed.[31]A	type	checker	for	a	statically	typed	language	must	verify	that	the	type	of	any	expression	is	consistent	with	the	type	expected	by	the	context	in	which	that	expression	appears.	For	example,	in	an	assignment	statement	of
the	form	x:=	e,the	inferred	type	of	the	expression	e	must	be	consistent	with	the	declared	or	inferred	type	of	the	variable	x.	This	notion	of	consistency,	called	compatibility,	is	specific	to	each	programming	language.If	the	type	of	e	and	the	type	of	x	are	the	same,	and	assignment	is	allowed	for	that	type,	then	this	is	a	valid	expression.	Thus,	in	the
simplest	type	systems,	the	question	of	whether	two	types	are	compatible	reduces	to	that	of	whether	they	are	equal	(or	equivalent).	Different	languages,	however,	have	different	criteria	for	when	two	type	expressions	are	understood	to	denote	the	same	type.	These	different	equational	theories	of	types	vary	widely,	two	extreme	cases	being	structural
type	systems,	in	which	any	two	types	that	describe	values	with	the	same	structure	are	equivalent,	and	nominative	type	systems,	in	which	no	two	syntactically	distinct	type	expressions	denote	the	same	type	(i.e.,	types	must	have	the	same	"name"	in	order	to	be	equal).In	languages	with	subtyping,	the	compatibility	relation	is	more	complex:	If	B	is	a
subtype	of	A,	then	a	value	of	type	B	can	be	used	in	a	context	where	one	of	type	A	is	expected	(covariant),	even	if	the	reverse	is	not	true.	Like	equivalence,	the	subtype	relation	is	defined	differently	for	each	programming	language,	with	many	variations	possible.	The	presence	of	parametric	or	ad	hoc	polymorphism	in	a	language	may	also	have
implications	for	type	compatibility.Computer	programming	portalComparison	of	type	systemsCovariance	and	contravariance	(computer	science)Polymorphism	in	object-oriented	programmingType	signatureType	theory^	The	Burroughs	ALGOL	computer	line	determined	a	memory	location's	contents	by	its	flag	bits.	Flag	bits	specify	the	contents	of	a
memory	location.	Instruction,	data	type,	and	functions	are	specified	by	a	3	bit	code	in	addition	to	its	48	bit	contents.	Only	the	MCP	(Master	Control	Program)	could	write	to	the	flag	code	bits.^	For	example,	a	leaky	abstraction	might	surface	during	development,	which	may	show	that	more	type	development	is	needed.	"The	evaluation	of	a	well-typed
program	always	terminates".B.	Nordstrm,	K.	Petersson,	and	J.	M.	Smith[5]	A	systematic	change	in	variables	to	avoid	capture	of	a	free	variable	can	introduce	error,	in	a	functional	programming	language	where	functions	are	first	class	citizens.[6]	From	the	lambda	calculus	article.^	Pierce	2002,	p.1:	"A	type	system	is	a	tractable	syntactic	method	for
proving	the	absence	of	certain	program	behaviors	by	classifying	phrases	according	to	the	kinds	of	values	they	compute."^	Cardelli	2004,	p.1:	"The	fundamental	purpose	of	a	type	system	is	to	prevent	the	occurrence	of	execution	errors	during	the	running	of	a	program."^	Pierce	2002,	p.208.^	a	b	Sethi,	R.	(1996).	Programming	languages:	Concepts	and
constructs	(2nded.).	Addison-Wesley.	p.142.	ISBN978-0-201-59065-4.	OCLC604732680.^	Nordstrm,	B.;	Petersson,	K.;	Smith,	J.M.	(2001).	"Martin-Lf's	Type	Theory".	Algebraic	and	Logical	Structures.	Handbook	of	Logic	in	Computer	Science.	Vol.5.	Oxford	University	Press.	p.2.	ISBN978-0-19-154627-3.^	Turner,	D.A.	(12	June	2012).	"Some	History	of
Functional	Programming	Languages"	(PDF).	invited	lecture	at	TFP12,	at	St	Andrews	University.	See	the	section	on	Algol	60.^	"...	anysound,	decidable	type	system	must	be	incomplete"	D.	Remy	(2017).	p.	29,	Remy,	Didier.	"Type	systems	for	programming	languages"	(PDF).	Archived	from	the	original	(PDF)	on	14	November	2017.	Retrieved	26	May
2013.^	Pierce	2002.^	a	b	c	Skeet,	Jon	(2019).	C#	in	Depth	(4ed.).	Manning.	ISBN978-1617294532.^	Miglani,	Gaurav	(2018).	"Dynamic	Method	Dispatch	or	Runtime	Polymorphism	in	Java".	Archived	from	the	original	on	2020-12-07.	Retrieved	2021-03-28.^	Wright,	Andrew	K.	(1995).	Practical	Soft	Typing	(PhD).	Rice	University.	hdl:1911/16900.^
"dynamic	(C#	Reference)".	MSDN	Library.	Microsoft.	Retrieved	14	January	2014.^	"std::any	Rust".	doc.rust-lang.org.	Retrieved	2021-07-07.^	Meijer,	Erik;	Drayton,	Peter.	"Static	Typing	Where	Possible,	Dynamic	Typing	When	Needed:	The	End	of	the	Cold	War	Between	Programming	Languages"	(PDF).	Microsoft	Corporation.^	Laucher,	Amanda;
Snively,	Paul	(2012).	"Types	vs	Tests".	InfoQ.^	Xi,	Hongwei	(1998).	Dependent	Types	in	Practical	Programming	(PhD).	Department	of	Mathematical	Sciences,	Carnegie	Mellon	University.	CiteSeerX10.1.1.41.548.Xi,	Hongwei;	Pfenning,	Frank	(1999).	"Dependent	Types	in	Practical	Programming".	Proceedings	of	the	26th	ACM	SIGPLAN-SIGACT
Symposium	on	Principles	of	Programming	Languages.	ACM.	pp.214227.	CiteSeerX10.1.1.69.2042.	doi:10.1145/292540.292560.	ISBN1581130953.	S2CID245490.^	Visual	Basic	is	an	example	of	a	language	that	is	both	type-safe	and	memory-safe.^	"4.2.2	The	Strict	Variant	of	ECMAScript".	ECMAScript	2020	Language	Specification	(11thed.).	ECMA.
June	2020.	ECMA-262.^	"Strict	mode	JavaScript".	MDN.	Developer.mozilla.org.	2013-07-03.	Retrieved	2013-07-17.^	"Strict	Mode	(JavaScript)".	MSDN.	Microsoft.	Retrieved	2013-07-17.^	"Strict	typing".	PHP	Manual:	Language	Reference:	Functions.^	a	b	Bracha,	G.	"Pluggable	Types"	(PDF).^	"Sure.	It's	called	"gradual	typing",	and	I	would	qualify	it
as	trendy.	..."	Is	there	a	language	that	allows	both	static	and	dynamic	typing?.	stackoverflow.	2012.^	a	b	c	Kopylov,	Alexei	(2003).	"Dependent	intersection:	A	new	way	of	defining	records	in	type	theory".	18th	IEEE	Symposium	on	Logic	in	Computer	Science.	LICS	2003.	IEEE	Computer	Society.	pp.8695.	CiteSeerX10.1.1.89.4223.
doi:10.1109/LICS.2003.1210048.^	Mitchell,	John	C.;	Plotkin,	Gordon	D.	(July	1988).	"Abstract	Types	Have	Existential	Type"	(PDF).	ACM	Trans.	Program.	Lang.	Syst.	10	(3):	470502.	doi:10.1145/44501.45065.	S2CID1222153.^	a	b	Siek,	Jeremy	(24	March	2014).	"What	is	gradual	typing?".^	Siek,	Jeremy;	Taha,	Walid	(September	2006).	Gradual	Typing
for	Functional	Languages	(PDF).	Scheme	and	Functional	Programming	2006.	University	of	Chicago.	pp.8192.^	Barendregt,	Henk;	Dekkers,	Wil;	Statman,	Richard	(20	June	2013).	Lambda	Calculus	with	Types.	Cambridge	University	Press.	p.66.	ISBN978-0-521-76614-2.^	"8.2.4	Type	system	unification".	C#	Language	Specification	(5thed.).	ECMA.
December	2017.	ECMA-334.^	"Native	Types".	Perl	6	Documentation.^	"Numerics,	Auto-boxing".	Perl	6	Documentation.Cardelli,	Luca;	Wegner,	Peter	(December	1985).	"On	Understanding	Types,	Data	Abstraction,	and	Polymorphism"	(PDF).	ACM	Computing	Surveys.	17	(4):	471523.	CiteSeerX10.1.1.117.695.	doi:10.1145/6041.6042.
S2CID2921816.Pierce,	Benjamin	C.	(2002).	Types	and	Programming	Languages.	MIT	Press.	ISBN978-0-262-16209-8.Cardelli,	Luca	(2004).	"Type	systems"	(PDF).	In	Allen	B.	Tucker	(ed.).	CRC	Handbook	of	Computer	Science	and	Engineering	(2nded.).	CRC	Press.	ISBN978-1584883609.Tratt,	Laurence	(July	2009).	"5.	Dynamically	Typed	Languages".
Advances	in	Computers.	Vol.77.	Elsevier.	pp.149184.	doi:10.1016/S0065-2458(09)01205-4.	ISBN978-0-12-374812-6.The	Wikibook	Ada	Programming	has	a	page	on	the	topic	of:	TypesThe	Wikibook	Haskell	has	a	page	on	the	topic	of:	Class	declarations	Media	related	to	Type	systems	at	Wikimedia	CommonsSmith,	Chris	(2011).	"What	to	Know	Before
Debating	Type	Systems".Retrieved	from	"	JavaScript	is	hell	because	of	two	problems.I	remove	the	problems,	and	you	start	having	fun.The	first	problem	is	retention.	You	remember	only	ten	or	twenty	percent	of	what	you	read.	That	spells	failure.	To	become	fluent	in	a	computer	language,	you	have	to	retain	pretty	much	everything.How	can	you	retain
everything?	Only	by	constantly	being	asked	to	play	everything	back.	That's	why	people	use	flashcards.	But	my	system	does	flashcards	one	better.	After	reading	a	short	chapter,	you	go	to	my	website	and	complete	twenty	interactive	exercises.	Algorithms	check	your	work	to	make	sure	you	know	what	you	think	you	know.	When	you	stumble,	you	do	the
exercise	again.	You	keep	trying	until	you	know	the	chapter	cold.	The	exercises	are	free.The	second	problem	is	comprehension.	Many	learners	hit	a	wall	when	they	try	to	understand	advanced	concepts	like	variable	scope	and	prototypes.	Unfortunately,	they	blame	themselves.	That's	why	the	Dummies	books	sell	so	well.	But	the	fault	lies	with	the
authors,	coding	virtuosos	who	lack	teaching	talent.	I'm	the	opposite	of	the	typical	software	book	author.	I'll	never	code	fast	enough	to	land	a	job	at	Google.	But	I	can	teach.Anyway,	most	comprehension	problems	are	just	retention	problems	in	disguise.	If	you	get	lost	trying	to	understand	variable	scope,	it's	because	you	don't	remember	how	functions
work.	Thanks	to	the	interactive	exercises	on	my	website,	you'll	always	understand	and	remember	everything	necessary	to	confidently	tackle	the	next	concept."I've	signed	up	to	a	few	sites	like	Udemy,	Codecademy,	FreeCodeCamp,	Lynda,	YouTube	videos,	even	searched	on	Coursera	but	nothing	seemed	to	work	for	me.	This	book	takes	only	10	minutes
each	chapter	and	after	that,	you	can	exercise	what	you've	just	learned	right	away!"	-Amazon	reviewer	Constanza	MoralesBetter	than	just	reading.	And	more	fun.You'll	spend	two	to	three	times	as	much	time	practicing	as	reading.	It's	how	you	wind	up	satisfied,	confident,	and	proud,	instead	of	confused,	discouraged,	and	defeated.	And	since	many
people	find	doing	things	more	enjoyable	than	reading	things,	it	can	be	a	pleasure	to	learn	this	way,	quite	apart	from	the	impressive	results	you	achieve."Very	effective	and	fun."	-Amazon	reviewer	A.	BergaminiWritten	especially	for	beginners.I	wrote	the	book	and	exercises	especially	for	people	who	are	new	to	programming.	Making	no	assumptions
about	what	you	already	know,	I	walk	you	through	JavaScript	slowly,	patiently.	I	explain	every	little	thing	in	sixth-grade	English.	I	avoid	unnecessary	technical	jargon	like	the	plague.	(Face	it,	fellow	authors,	it	is	the	plague.)"The	layman	syntax	he	uses...makes	it	much	easier	to	suddenly	realize	a	concept	that	seemed	abstract	and	too	hard	to	wrap	your
head	around	is	suddenly	not	complicated	at	all."	-	Amazon	reviewer	IMHOThe	exercises	keep	you	focused,	give	you	extra	practice	where	you're	shaky,	and	prepare	you	for	each	next	step.	Every	lesson	is	built	on	top	of	a	solid	foundation	that	you	and	I	have	carefully	constructed.	Each	individual	step	is	small.	But,	as	Amazon	reviewer	James	Toban	says,
when	you	get	to	the	end	of	the	book,	you've	built	"a	tower	of	JavaScript."If	you're	an	accomplished	programmer	already,	my	book	may	be	too	elementary	for	you.	(Do	you	really	need	to	be	told	what	a	variable	is?)	But	if	you're	new	to	programming,	more	than	a	thousand	five-star	reviews	are	pretty	good	evidence	that	my	book	may	be	just	the	one	to	get
you	coding	JavaScript	successfully."Mark	Myers'	method	of	getting	what	can	be...difficult	information	into	a	format	that	makes	it	exponentially	easier	to	consume,	truly	understand,	and	synthesize	into	real-world	application	is	beyond	anything	I've	encountered	before."	-Amazon	reviewer	Jason	A.	Ruby

Smarter	way	to	learn	javascript	exercises.	A	smarter	way	to	learn	javascript	pdf	github.	A	smarter	way	to	learn	javascript	latest	edition.	A	smarter	way	to	learn	javascript	latest	edition	pdf.	A	smarter	way	to	learn
javascript	review.	A	smarter	way	to	learn	javascript	reddit.	A	smarter	way	to	learn	javascript	quiz.	A	smarter	way	to	learn	javascript	epub.	Smarter	way	to	learn	javascript	book.

https://hpfwater.com/admin/upload/files/35581352867.pdf
http://yidaig.com/uploadfile/file/20250712214054.pdf
cokoje
https://tailormade-sales-marketing.com/userfiles/file/1194315338.pdf
niyayaya

https://hpfwater.com/admin/upload/files/35581352867.pdf
http://yidaig.com/uploadfile/file/20250712214054.pdf
http://ceomit.com/fckupload/file/vozelulupoxupiv_rofakoramideva_fijaf_gajivoji_zijifevotomew.pdf
https://tailormade-sales-marketing.com/userfiles/file/1194315338.pdf
https://yuha.be/_files/file/ad782de2-88ba-43f8-a1d6-bacd94a11945.pdf

