
	

https://duketuk.tugoduzak.com/578084334894548156880831190600527810410599?kabowuwavasemifixevusomekonoxikatebagaba=maninubaxeperivapuritarikebenasovirijukejekimupemewopanajizosofujoluvopuzexiguvetufebavepuvanopuvuvozojulepotupoxabipinikikitibakitedusovurimeligegilokefezimipuwanozipuzalikoferakisebakarisewivigisutim&utm_term=code+review+checklist+java&pizugoludeponakexibufodewanamepilorejalosovevigiguzukiserozinufukaxubiwenolakivuwag=nomewaxevuwatodiwugolotojenirogakanutasixisepojitituwafixixuvegusufuzafubewatumasinetopuwawaxedunumitozavuxuk




























When	left	unchecked,	a	Java	codebase	can	accumulate	bugs,	memory	leaks,	unhandled	exceptions,	and	barely	comprehensible	code	fragments.	So,	you	need	to	perform	Java	code	reviews	to	keep	your	application	efficient,	scalable,	and	secure.One	problem,	though,	is	that	most	teams	loathe	large-scale	reviews.	We	believe	thats	because	they	dont
follow	a	proper	structure,	and	as	a	result,	the	process	becomes	unwieldy	and	overwhelming.So,	allow	us	to	offer	you	a	framework	and	some	practices	to	make	Java	code	review	more	manageable	and	efficient.	Well	also	provide	a	detailed	Java	code	review	checklist,	examples	of	widespread	issues,	and	tools	that	streamline	(and	automate)	various
checks.Why	Is	a	Code	Review	in	Java	Critical	for	Projects?A	Java	code	review	is	a	systematic	assessment	of	your	source	code	to	ensure	it	meets	established	standards	and	coding	practices.	It	involves	inspecting	the	code	for	errors,	performance	problems,	security	gaps,	syntax	issues,	and	documentation	clarity.In	Java	projects,	regular	code	reviews
have	several	purposes:Improved	code	quality:	Reviews	help	adhere	to	uniform	coding	standards,	naming	conventions,	and	documentation	style,	resulting	in	efficient,	error-free,	and	maintainable	code.Performance	enhancement:	Addressing	inefficient	threads,	memory-consuming	objects,	and	collections	helps	improve	application	speed.Less	waste:
Code	assessments	provide	an	opportunity	to	mentor	junior	team	members,	reinforce	best	practices,	and	improve	their	skill	levels.	This	ensures	you	make	the	most	of	your	team	and	foster	ongoing	professional	development	to	encourage	long-term	commitment	to	growing	with	the	company.Increased	code	maintainability:	Properly	structured	code	leads
to	less	technical	debt	and	fewer	unnecessary	dependencies,	making	components	more	modular.Reduced	vulnerabilities:	Reviews	help	identify	logical	errors,	memory	leaks,	unhandled	exceptions,	security	flaws,	and	compliance	issues.Even	experienced	developers	and	testers	tend	to	make	mistakes	or	overlook	certain	practices.	A	comprehensive
review	can	keep	your	codebase	cleaner	and	easier	to	maintain.Java	Code	Review	Checklist	Code	review	is	one	of	those	things	everyone	agrees	is	important	but	few	teams	actually	enjoy	doing.	Its	time-consuming,	sometimes	awkward,	and	often	feels	like	a	chore.	But	when	done	right?	Its	one	of	the	highest-leverage	practices	you	can	have	in	a	Java
team.This	guide	is	for	teams	who	want	to	get	serious	about	code	quality	without	slowing	everything	down.	Youll	find	real-world	best	practices,	a	practical	checklist,	and	the	kinds	of	things	Java	devs	actually	deal	with	in	reviews.	Whether	your	team	is	still	growing	or	already	shipping	complex	systems,	this	is	for	you.Why	Java	Code	Reviews	Still	Matter
(a	Lot)Lets	get	one	thing	out	of	the	way:	Java	isnt	going	anywhere.	Its	still	one	of	the	most-used	backend	languages	in	the	world.	But	it	also	comes	with	real	complexity	verbose	syntax,	threading,	exceptions,	OOP	patterns,	dependency	injection	you	get	the	idea.Thats	exactly	why	Java	code	review	matters.A	single	method	can	span	80	lines	and	look
totally	fine	at	first	glance.	But	dig	deeper	and	you	might	find	a	silent	performance	hit,	a	concurrency	risk,	or	just	something	that	breaks	your	teams	internal	conventions.	Reviews	catch	those	before	they	become	production	issues.But	they	also	do	more	than	that:They	help	everyone	understand	more	of	the	codebaseThey	onboard	new	devs	fasterThey
reduce	technical	debtThey	prevent	only	Alice	knows	how	this	works	situationsAnd	maybe	most	importantly	they	help	teams	build	shared	trust.	That	matters.What	Great	Java	Code	Reviews	Look	LikeBefore	we	get	to	the	checklist,	lets	talk	about	what	good	actually	looks	like.	Because	a	code	review	is	more	than	nitpicks	and	green	checkmarks.1.	Theyre
focusedGreat	reviews	dont	try	to	fix	the	entire	codebase.	They	focus	on	the	current	change.	They	ask:Does	this	PR	do	what	its	supposed	to	do?Is	it	safe,	readable,	and	maintainable?Are	there	edge	cases	were	missing?2.	Theyre	specificRename	this	var	isnt	helpful.This	variable	name	doesnt	reflect	what	it	actually	holds	maybe	call	it	parsedResult
instead	of	temp?	is.	Give	context.	Help	your	teammates	understand	why	somethings	worth	changing.3.	They	teach	(and	learn)The	best	reviews	are	conversations.	Not	lectures.	If	youre	reviewing,	your	goal	isnt	to	catch	mistakes	its	to	help	the	author	make	the	code	better,	and	to	share	knowledge	in	the	process.	Ask	questions.	Point	to	docs.	Offer
alternatives.Java	Code	Review:	The	Essential	ChecklistYou	dont	need	to	reinvent	the	wheel	every	time.	This	checklist	covers	what	most	reviewers	should	look	for	in	any	Java	codebase.	Copy,	adapt,	share	with	your	team.	Logic	and	RequirementsDoes	the	code	do	what	the	story	or	ticket	says	it	should?Are	edge	cases	handled	(nulls,	invalid	input,
concurrency)?Could	this	break	existing	functionality?	Code	StructureAre	methods	short	and	single-purpose?Are	classes	doing	only	one	thing?Is	the	code	easy	to	read	and	reason	about?	Style	and	ConventionsAre	naming	conventions	followed	(camelCase,	PascalCase,	constants	in	UPPER_SNAKE_CASE)?Is	formatting	consistent?Are	there	unnecessary
comments	or	TODOs	left?	Error	HandlingAre	exceptions	handled	properly?Are	we	catching	the	right	exceptions	or	swallowing	stack	traces?Are	we	logging	sensitive	information?	Performance	and	ResourcesAny	obvious	inefficiencies	(e.g.,	inside	loops,	unnecessary	object	creation)?Are	streams,	maps,	and	collections	used	correctly?Are	resources	(files,
DB	connections)	being	closed?	TestsAre	there	tests	for	this	change?Do	the	tests	cover	both	expected	and	unexpected	input?Would	this	break	existing	tests?	Security	(especially	in	web	apps)Are	inputs	validated	and	sanitized?Are	passwords/tokens	stored	or	logged?Any	potential	injection	or	race	condition	risks?Common	Mistakes	to	Avoid	in	Java	Code
ReviewEven	experienced	devs	fall	into	these	traps.	Recognizing	them	early	saves	time	(and	frustration).	The	it	compiles,	ship	it	mindsetPassing	tests	are	great.	But	they	dont	catch:Bad	variable	namesCode	thats	impossible	to	extendLogic	that	sort	of	works	until	it	doesntYour	job	as	a	reviewer	isnt	to	rubber-stamp.	Its	to	think	critically.	Giant	PRsWeve
all	seen	them.	500+	lines.	9	files.	Impossible	to	review	well.Smaller	is	better.	Aim	for	100300	line	diffs.	Make	it	easy	to	give	thoughtful	feedback.	Style	nitpickingIf	your	team	has	autoformatting	tools	(and	you	should),	dont	waste	time	arguing	about	braces	or	spacing.	Focus	on	logic,	design,	and	impact.	Reviewer-as-gatekeeperYour	job	isnt	to	prove
youre	smarter.	Its	to	help	your	teammate	ship	better	code.	If	somethings	wrong,	point	it	out	respectfully	and	offer	help	when	you	can.Tips	to	Make	Java	Code	Reviews	Smoother	(For	Everyone)You	can	have	the	best	checklist	in	the	world,	but	if	your	process	is	broken,	nobodys	going	to	enjoy	doing	reviews.Here	are	some	battle-tested	tips:Keep	PRs
smallSeriously.	This	changes	everything.	Reviewers	will	give	better	feedback,	faster.Review	early,	review	oftenDont	let	PRs	sit	for	two	days.	Give	feedback	while	the	context	is	fresh.	If	youre	the	author,	request	review	as	soon	as	tests	pass.Use	review	tools	properlyLeverage	GitHub/GitLab	features:Leave	inline	commentsSuggest	changes	directlyTag
specific	teammatesWrite	good	PR	descriptionsContext	matters.	A	one-liner	like	Fix	bug	doesnt	help.	Briefly	explain	whats	changing	and	why.	Link	to	related	issues	if	relevant.Celebrate	improvementsSaw	a	smart	solution	or	a	thoughtful	refactor?	Say	so.	Reviews	arent	just	about	criticism	theyre	a	chance	to	recognize	great	work.Java	Code	Review
FAQWhat	if	I	dont	understand	the	code	Im	reviewing?Thats	okay.	Ask	questions.	A	good	PR	should	be	easy	to	follow.	If	its	not,	thats	a	signal	not	a	you	problem.How	long	should	I	spend	reviewing	a	PR?Depends	on	size	and	complexity.	A	200-line	change?	Maybe	1520	minutes.	Set	a	timer	if	needed.	More	than	that?	Its	probably	too	big.Who	should
review	the	code?Someone	familiar	with	the	domain	is	ideal.	But	everyone	should	be	able	to	review	most	PRs.	Rotate	reviewers	to	avoid	silos.What	if	we	disagree	in	a	review?Disagree	respectfully.	Use	data	or	reference	guides.	Involve	a	third	teammate	if	needed.	Dont	let	it	become	personal.Cant	AI	do	code	review	now?AI	helps	a	lot	but	doesnt	fully
replace	humans.	It	wont	always	know	your	internal	conventions	or	business	logic.	Think	of	it	as	a	power-up,	not	a	substitute.Final	ThoughtsJava	code	review	isnt	just	a	gatekeeping	process.	Its	a	way	to	build	better	software,	together.If	you	want	your	team	to	move	faster	and	keep	quality	high,	investing	in	reviews	is	one	of	the	best	decisions	you	can
make.	Start	with	the	checklist	above.	Avoid	the	common	traps.	Keep	your	PRs	small,	your	comments	kind,	and	your	focus	on	long-term	maintainability.And	if	your	current	review	process	feels	like	a	mess?	Thats	normal.	Most	teams	improve	it	gradually.	You	dont	need	a	perfect	system	just	one	that	keeps	evolving.Thanks	for	reading.	Now	go	review
that	PR	in	your	backlog.	Want	to	go	deeper?	Try	using	tools	like	Kodus	to	automate	part	of	your	Java	code	review	workflow	and	free	up	your	team	to	focus	on	the	stuff	that	really	matters.Your	future	self	will	thank	you.	In	modern	software	development,	code	reviews	are	a	crucial	component	in	delivering	high-quality	software.	They	ensure	that
applications	are	maintainable,	efficient,	and	bug-free.	Without	a	structured	review	process,	you	may	face	performance	issues	and	introduce	bugs	and	inconsistencies	that	could	put	your	team	at	great	risk	in	delivery.This	article	will	help	you	understand	how	important	code	review	is	and	what	you	should	include	in	a	code	review	checklist	for	Java
projects.Role	of	the	Code	Review	ProcessIn	Java	development,	maintaining	high-quality	code	is	an	essential	factor	in	delivering	high-quality	software.	The	code	review	process	serves	as	a	quality	assurance	measurement	to	discover	bugs,	improve	code	structure,	and	ensure	coding	standards.	It	also	enhances	team	collaboration	and	reduces	technical
debt,	leading	to	more	sustainable	source	code.Why	Are	Code	Reviews	Crucial	for	Java	Projects?Java	is	a	highly	complex	programming	language	with	a	strong	object-oriented	nature	designed	to	enhance	a	software	applications	reliability,	scalability,	and	maintainability,	which	could	be	compromised	without	a	rigid	code	review	process.	Here	are	several
reasons	why	code	reviews	are	essential	for	Java	projects.Java	applications	enforce	object-oriented	programming	that	heavily	relies	on	class	hierarchies,	inheritance,	and	encapsulation.Poorly	structured	classes	and	long	inheritance	trees	or	improper	methods	typically	lead	to	code	that	is	tightly	coupled	and	difficult	to	maintain.Large-scale	enterprise
applications	require	long-term	maintainability.Most	Java	applications	are	built	for	large-scale	enterprise	systems,	which	require	long-term	maintainability.When	code	isnt	reviewed,	it	can	become	inefficient,	bloated,	and	extremely	challenging	to	refactor	over	time.Performance	optimization	is	a	key	factor	in	Java.To	build	high-performance	systems,
memory	usage,	CPU	usage	and	responsiveness	must	be	optimized.	Incorrect	implementation	of	these	key	factors	could	cause	significant	issues	such	as	memory	leakages	and	inefficient	loops.Code	reviews	help	identify	inefficient	use	of	data	structures,	excessive	use	of	object	references,	and	nested	loops.Exception	handling	in	Java	requires	mindful
reviews.Java	is	a	programming	language	that	promotes	a	strong	checked	exception	mechanism,	which	significantly	enhances	the	reliability	of	an	application.	However,	it	also	has	a	flaw,	as	it	might	lead	to	an	excessive	use	of	try-catch	blocks	without	logging	them.A	good	code	review	process	not	only	handles	these	exceptions	well	but	also	uses	custom
exception	classes	where	necessary	and	standardized	logging	mechanisms	like	SLF4J	or	Log4J	to	debug.Early	discovery	of	security	vulnerabilities	in	Java	is	essential.Java	is	widely	used	in	security-critical	sectors	like	banking,	finance	systems,	government	applications,	and	e-commerce	engines.A	well-processed	code	review	helps	to	ensure	that
applications	are	secure,	use	proper	encryption	hashing,	and	avoid	unsafe	Java	features	like	insecure	deserialization	of	objects.Javas	multi-threading	model	can	be	complex	and	error-prone.Core	features,	such	as	concurrent	programming	and	multi-threading	models,	can	introduce	deadlocks,	synchronization	issues,	and	race	conditions	if	not	handled
carefully.Code	reviews	can	resolve	these	by	correctly	using	synchronized	blocks,	deadlocks,	and	concurrent	collections	while	ensuring	thread	safety	in	shared	resources.The	Ultimate	Java	Code	Review	ChecklistAs	we	now	have	a	clear	idea	of	the	importance	of	code	review	guidelines,	lets	see	what	should	be	on	a	Java	code	review	checklist.1.	Code
Readability	and	MaintainabilityValidate	that	the	code	is	easy	to	read	and	understand.Validate	whether	the	variables	and	methods	used	adhere	to	Java	naming	conventions.Ensure	comments	are	clear,	relevant,	concise,	and	consistent	in	formatting	and	indentation.//	Badint	x	=	1;if	(x	==	1)	{	System.out.println("Yes");}//	Goodint	userStatus	=	1;if
(userStatus	==	1)	{	System.out.println("User	is	active");}2.	Adherence	to	Coding	StandardsValidate	that	the	code	aligns	with	the	standard	Java	conventions	like	indentation,	line	length,	use	of	spaces,	etc.Ensure	consistency	in	the	naming	and	organization	of	classes,	methods,	and	variables.//	Badpublic	class	myclass{public	void	getdata(	)
{System.out.println("data");}}//	Goodpublic	class	MyClass	{	public	void	getData()	{	System.out.println("data");	}}3.	Error	Handling	and	Exception	ManagementValidate	that	exceptions	are	well	handled	with	meaningful	messages.Ensure	a	clear	strategy	exists	for	exception	propagation,	logging,	and	recovery.//	Badtry	{	int	result	=	10	/	0;}	catch
(Exception	e)	{	e.printStackTrace();}//	Goodtry	{	int	result	=	10	/	0;}	catch	(ArithmeticException	e)	{	System.err.println("Cannot	divide	by	zero:	"	+	e.getMessage());	//	Log	exception	properly	here}4.	Code	Performance,	Optimization,	and	EfficiencyEnsure	that	loops,	redundant	computations,	and	resource	management	are	implemented
efficiently.Suggest	refinements	for	code	performance	without	sacrificing	readability.Look	for	potential	memory	leaks	or	excessive	object	creation.//	Bad	(redundant	loopList	names	=	getNames();for	(int	i	=	0;	i	<	names.size();	i++)	{	System.out.println(names.get(i));}//	GoodList	names	=	getNames();for	(String	name	:	names)	{
System.out.println(name);}5.	Unit	Tests	and	Test	CoverageEnsure	that	tests	cover	both	happy	paths	and	edge	cases.Validate	that	unit	tests	are	independent,	automated,	and	run	consistently.Ensure	meaningful	assertions	are	used,	and	always	check	if	the	expected	outcome	is	met.6.	Code	Modularity	and	ReusabilityEnsure	the	methods/classes	used
are	small	and	have	a	single	responsibility.Ensure	that	the	redundant	code	has	been	refactored	into	reusable	methods.//	Badpublic	void	calculateTax()	{	double	tax	=	salary	*	0.18;	System.out.println("Tax:	"	+	tax);}//	Goodpublic	double	calculateTax(double	salary)	{	return	salary	*	0.18;}Ensure	that	design	patterns	like	Factory	and	Singleton	are	used
where	applicable.7.	API	and	Database	InteractionValidate	that	API	calls	are	handled	asynchronously.Ensure	SQL	queries	are	optimized	for	enhanced	performance.Check	if	proper	indexing	and	caching	mechanisms	are	used.SonarQube:	One	of	the	most	popular	tools	available	in	the	market	for	continuous	code	inspection.	Integrates	seamlessly	with
most	development	environments	and	automatically	analyzes	Java	code	for	bugs	and	vulnerabilities.Qodo	Gen:	An	IDE	plugin	that	generates	context-aware	code	and	tests,	offers	smart	code	suggestions,	and	helps	developers	write	better	tests	directly	within	their	environment.Qodo	Merge:	A	Git-integrated	agent	that	enhances	pull	request	workflows	by
reviewing	code,	highlighting	issues,	and	generating	AI-powered	suggestions	for	improvements.Checkstyle:	An	SCA	tool	designed	to	validate	adherence	to	Java	coding	standards.	This	highly	configurable	tool	can	be	integrated	into	your	build	process	to	detect	style	violations	automatically.PMD:	An	SCA	tool	used	to	identify	common	programming	flaws
in	Java	code,	such	as	unused	variables,	empty	catch	blocks,	and	overly	complex	methods.FindBugs:	Another	SCA	tool	focusing	on	analyzing	bytecode	to	identify	potential	errors.	It	also	helps	detect	performance	issues	and	security	vulnerabilities.JDepend:	A	tool	used	to	measure	the	quality	of	the	design	of	Java	code.	It	calculates	metrics	related	to	the
structure	and	dependencies	of	Java	packages	and	classes.JaCoCo:	A	code	coverage	tool	for	Java	that	measures	and	generates	reports	on	which	parts	of	the	code	are	covered	and	not	covered	by	unit	tests.Benefits	of	Regular	Code	ReviewsFewer	bugs	in	production:	Early	discovery	of	bugs	helps	resolve	them	earlier	than	fixing	them	post-release,	which
is	very	costly.Enhanced	code	quality:	Scrutinizing	the	code	by	multiple	developers	prevents	issues	from	going	unnoticed	in	production.Better	team	collaboration:	Developers	learn	new	techniques,	best	practices,	and	solutions	from	one	another.Faster	development	cycle:	Discovering	and	resolving	defects	or	issues	helps	expedite	the	delivery	cycle	as	it
reduces	the	complexity	of	debugging	them	in	a	later	stage.Increased	maintainability:	Well-reviewed	clean	code	is	more	modular,	reusable,	and	easier	to	understand.	This	leads	to	better	long-term	maintainability.Code	Review	Pitfalls	and	How	to	Avoid	Them1.	Rushing	Through	Code	ReviewsReviewers	sometimes	rush	through	code	due	to	time
pressure,	leading	to	missed	bugs	or	poor-quality	approvals.How	to	avoid:Set	aside	time	specifically	for	code	reviews.Encourage	smaller,	incremental	pull	requests	to	keep	reviews	manageable.2.	Overlooking	Small	IssuesWhile	searching	for	big	bugs	or	design	flaws,	its	easy	to	skip	over	small	but	important	issues	like	naming,	duplication,	or
formatting.How	to	avoid:Minor	issues	impact	maintainability;	treat	them	seriously.Use	a	checklist	to	consistently	catch	both	big	and	small	problems.3.	Focusing	Only	on	SyntaxGetting	stuck	on	minor	formatting	or	stylistic	changes	can	slow	progress	and	create	tension.How	to	avoid:Prioritize	functionality,	readability,	and	logic	over	nitpicking.Use
automated	tools	to	handle	formatting	issues.4.	Ignoring	Coding	StandardsWithout	consistent	standards,	code	becomes	hard	to	read	and	maintain	across	the	team.How	to	avoid:Follow	agreed-upon	coding	conventions.Use	linters	and	formatters	to	automate	standard	checks.5.	Not	Providing	Constructive	FeedbackNegative	or	vague	comments	like	this
is	bad	arent	helpful	and	can	demotivate	developers.How	to	avoid:Give	clear,	specific	suggestions	for	improvement.Focus	on	the	code,	not	the	coder.	Keep	feedback	respectful	and	helpful.Final	ThoughtsCode	reviews	in	Java	projects	arent	just	about	discovering	syntax	errors.	They	help	ensure	key	factors	in	a	project	like	scalability,	performance,
security,	and	maintainability.	Since	Java	is	widespread	in	mission-critical	applications	across	multiple	industries,	neglecting	code	review	may	cause	significant	impact	through	costly	defects	and	long-term	issues.FAQs1.	Why	is	code	review	critical	for	Java	projects?Code	reviews	help	catch	bugs	early,	improve	code	quality,	ensure	consistency,	and
promote	knowledge	sharing	across	the	team.	In	Java	projects,	they	also	help	maintain	strict	type	safety	and	adherence	to	object-oriented	design	principles.2.	How	do	I	ensure	Java	code	readability	during	a	review?Look	for	clear	naming	of	variables	and	methods,	proper	indentation,	consistent	formatting,	and	meaningful	comments.	Encourage	short,
focused	methods	and	avoid	deeply	nested	logic.3.	How	can	I	enforce	Java	coding	standards	in	my	team?Use	tools	like	Checkstyle,	PMD,	or	SonarQube	to	automatically	flag	violations.	Set	up	shared	formatting	rules	in	the	IDE	and	make	coding	standards	part	of	the	review	checklist.4.	How	do	I	review	Java	code	for	proper	unit	testing?Check	if	tests
cover	both	normal	and	edge	cases.	Ensure	they	are	isolated	and	repeatable	and	use	clear	assertions.	Also,	verify	the	use	of	mocking	frameworks	like	Mockito	for	testing	dependencies.	Join	the	DZone	community	and	get	the	full	member	experience.	Join	For	Free	Clean	CodeChecklist	ItemCategoryUse	Intention-Revealing	NamesMeaningful	NamesPick
one	word	per	conceptMeaningful	NamesUse	Solution/Problem	Domain	NamesMeaningful	NamesClasses	should	be	small!ClassesFunctions	should	be	small!FunctionsDo	one	ThingFunctionsDon't	Repeat	Yourself	(Avoid	Duplication)FunctionsExplain	yourself	in	codeCommentsMake	sure	the	code	formatting	is	appliedFormattingUse	Exceptions	rather
than	Return	codesExceptionsDon't	return	NullExceptions*	Reference:	ItemCategoryMake	class	final	if	not	being	used	for	inheritanceFundamentalsAvoid	duplication	of	codeFundamentalsRestrict	privileges:	Application	to	run	with	the	least	privilege	mode	required	for	functioningFundamentalsMinimize	the	accessibility	of	classes	and
membersFundamentalsDocument	security	related	informationFundamentalsInput	into	a	system	should	be	checked	for	valid	data	size	and	rangeDenial	of	ServiceAvoid	excessive	logs	for	unusual	behaviorDenial	of	ServiceRelease	resources	(Streams,	Connections,	etc)	in	all	casesDenial	of	ServicePurge	sensitive	information	from	exceptions	(exposing
file	path,	internals	of	the	system,	configuration)Confidential	InformationDo	not	log	highly	sensitive	informationConfidential	InformationConsider	purging	highly	sensitive	from	memory	after	useConfidential	InformationAvoid	dynamic	SQL,	use	prepared	statementInjection	InclusionLimit	the	accessibility	of	packages,classes,	interfaces,	methods,	and
fieldsAccessibility	ExtensibilityLimit	the	extensibility	of	classes	and	methods	(by	making	it	final)Accessibility	ExtensibilityValidate	inputs	(for	valid	data,	size,	range,	boundary	conditions,	etc)Input	ValidationValidate	output	from	untrusted	objects	as	inputInput	ValidationDefine	wrappers	around	native	methods	(not	declare	a	native	method	public)Input
ValidationTreat	output	from	untrusted	object	as	inputMutabilityMake	public	static	fields	final	(to	avoid	caller	changing	the	value)MutabilityAvoid	exposing	constructors	of	sensitive	classesObject	ConstructionAvoid	serialization	for	security-sensitive	classesSerialization	DeserializationGuard	sensitive	data	during	serializationSerialization
DeserializationBe	careful	caching	results	of	potentially	privileged	operationsSerialization	DeserializationOnly	use	JNI	when	necessaryAccess	Control	*	Reference:	ItemCategoryAvoid	excessive	synchronizationConcurrencyKeep	Synchronized	Sections	SmallConcurrencyBeware	the	performance	of	string	concatenationGeneral	ProgrammingAvoid
creating	unnecessary	objectsCreating	and	Destroying	Objects*	Reference:	ItemUse	checked	exceptions	for	recoverable	conditions	and	runtime	exceptions	for	programming	errorsExceptionsFavor	the	use	of	standard	exceptionsExceptionsDon't	ignore	exceptionsExceptionsCheck	parameters	for	validityMethodsReturn	empty	arrays	or	collections,	not
nullsMethodsMinimize	the	accessibility	of	classes	and	membersClasses	and	InterfacesIn	public	classes,	use	accessor	methods,	not	public	fieldsClasses	and	InterfacesMinimize	the	scope	of	local	variablesGeneral	ProgrammingRefer	to	objects	by	their	interfacesGeneral	ProgrammingAdhere	to	generally	accepted	naming	conventionsGeneral
ProgrammingAvoid	finalizersCreating	and	Destroying	ObjectsAlways	override	hashCode	when	you	override	equalsGeneral	ProgrammingAlways	override	toStringGeneral	ProgrammingUse	enums	instead	of	int	constantsEnums	and	AnnotationsUse	marker	interfaces	to	define	typesEnums	and	AnnotationsSynchronize	access	to	shared	mutable
dataConcurrencyPrefer	executors	to	tasks	and	threadsConcurrencyDocument	thread	safetyConcurrencyValid	JUnit	/	JBehave	test	cases	existTesting*	Reference:	Code	AnalysisCategoryChecklist	ItemCheck	static	code	analyzer	report	for	the	classes	added/modifiedStatic	Code	Analysis	code	style	Java	(programming	language)	Opinions	expressed	by
DZone	contributors	are	their	own.	Related	Image	SourceCode	reviews	are	an	essential	part	of	the	software	development	process,	especially	in	Java,	a	language	known	for	its	resilience	and	cross-platform	capabilities.	Effective	code	reviews	lead	to	higher	code	quality,	reduced	bugs,	and	improved	team	collaboration.	This	article	aims	to	provide
actionable	insights	and	best	practices	for	conducting	Java	code	reviews	efficiently	and	effectively.Understanding	the	Importance	of	Code	ReviewsJava,	being	a	statically	typed	language,	brings	a	level	of	complexity	and	strictness	in	its	code	structure.	Code	reviews	in	this	context	serve	multiple	purposes:Improving	Code	Quality:	Javas	syntax	and
feature	set,	including	its	object-oriented	nature,	demand	a	thorough	understanding	to	write	efficient	and	error-free	code.	Reviews	help	in	maintaining	high	standards	by	scrutinizing	the	use	of	Java-specific	features	like	stream	APIs,	exception	handling,	and	memory	management.Detecting	Bugs	Early:	Javas	exception	handling	mechanism,	while	strong,
can	often	lead	to	complex	error-handling	code.	During	reviews,	such	errors	are	more	likely	to	be	caught,	reducing	the	likelihood	of	runtime	exceptions.Knowledge	Sharing	Among	Team	Members:	Code	reviews	in	Java	offer	a	platform	for	less	experienced	developers	to	learn	from	more	seasoned	colleagues,	especially	regarding	Javas	vast	standard
library	and	best	practices.Benefits	of	Regular	Code	ReviewsConducting	regular	code	reviews	yields	numerous	advantages:Faster	Onboarding	of	New	Team	Members:	Regular	reviews	create	an	environment	of	continuous	learning,	making	it	easier	for	new	team	members	to	get	up	to	speed	with	the	codebase	and	the	teams	coding
conventions.Consistent	Code	Style	and	Standards:	Java	projects	benefit	from	a	consistent	style	and	adherence	to	best	practices,	which	is	more	achievable	through	regular	code	reviews.	Tools	like	Checkstyle	or	PMD	can	be	used	alongside	manual	reviews	to	enforce	these	standards.Enhanced	Team	Collaboration	and	Morale:	Code	reviews	encourage	an
atmosphere	of	collective	ownership	and	responsibility.	This	collaborative	approach	not	only	improves	the	code	quality	but	also	boosts	team	morale	and	cohesion.In-Depth	Look	at	the	BenefitsRisk	Mitigation:	In	complex	systems,	especially	those	written	in	Java,	the	risk	of	introducing	bugs	that	can	have	far-reaching	consequences	is	high.	Regular	code
reviews	act	as	a	checkpoint	to	mitigate	these	risks.Performance	Optimization:	Javas	performance	can	be	significantly	influenced	by	how	the	code	is	written,	especially	in	terms	of	memory	management	and	efficient	use	of	collections.	Through	code	reviews,	more	experienced	developers	can	guide	others	on	optimizing	code	for	better
performance.Adherence	to	Best	Practices:	Javas	evolution	introduces	new	features	and	best	practices.	Code	reviews	are	an	excellent	way	for	a	team	to	stay	updated	and	incorporate	these	practices	into	their	daily	work.Setting	Up	a	Code	Review	ProcessImplementing	an	effective	code	review	process	is	a	critical	step	in	ensuring	the	success	of	Java
development	projects.	A	well-defined	process	not	only	streamlines	the	review	activities	but	also	ensures	consistency	and	effectiveness	across	the	team.Defining	Clear	Objectives	and	GuidelinesBefore	diving	into	code	reviews,	its	important	to	set	clear	objectives	and	guidelines	for	what	the	process	should	achieve.Establishing	Code	Review	Objectives:
Define	what	your	team	aims	to	accomplish	with	code	reviews.	This	could	include	improving	code	quality,	ensuring	code	conforms	to	project	standards,	sharing	knowledge	among	team	members,	and	identifying	potential	bugs	early.Creating	a	Checklist	for	Java	Code	Reviews:	A	checklist	acts	as	a	guide	for	reviewers,	ensuring	that	they	consistently
cover	all	essential	aspects	of	the	code.	For	Java,	this	might	include	checking	for	memory	leaks,	proper	use	of	Java	Collections,	adherence	to	object-oriented	principles,	and	effective	exception	handling.Tools	and	Technologies	for	Code	ReviewsChoosing	the	right	tools	and	technologies	is	pivotal	for	facilitating	an	efficient	code	review	process.Utilizing
Platforms	like	GitHub,	GitLab,	or	Bitbucket:	These	platforms	offer	built-in	code	review	tools	that	allow	for	inline	comments,	discussions,	and	approvals.	They	also	integrate	with	continuous	integration	tools,	making	it	easier	to	automate	certain	aspects	of	code	reviews.Code	Review	Tools	Specific	to	Java:	Tools	like	Crucible	and	Review	Board	offer
additional	features	tailored	for	Java	development,	such	as	deeper	integration	with	Java	IDEs	(e.g.,	IntelliJ	IDEA	or	Eclipse)	and	specific	code	analysis	capabilities.Establishing	a	Review	WorkflowA	structured	workflow	is	essential	for	efficient	and	effective	code	reviews.Define	the	Review	Process:	Establish	who	will	review	the	code,	when	reviews	will
occur,	and	how	feedback	will	be	communicated.	This	includes	deciding	whether	to	use	a	lightweight	approach	(e.g.,	over-the-shoulder	reviews)	or	a	more	formal	process	(e.g.,	pull	requests).Integrating	Code	Reviews	into	the	Development	Cycle:	Ensure	that	code	reviews	are	a	regular	part	of	the	development	cycle,	not	an	afterthought.	This	integration
helps	in	catching	issues	early	and	reduces	the	burden	of	addressing	multiple	issues	at	a	later	stage.Training	and	OnboardingFor	the	code	review	process	to	be	successful,	team	members	need	to	be	properly	trained.Educate	the	Team:	Provide	training	on	how	to	conduct	effective	code	reviews,	including	how	to	give	and	receive	feedback
constructively.Onboarding	New	Members:	Make	sure	new	team	members	understand	the	code	review	process	and	are	comfortable	with	the	tools	and	standards	used	by	your	team.Best	Practices	for	Conducting	Code	ReviewsEffective	code	reviews	are	not	just	about	finding	bugs	but	also	about	improving	code	quality,	enhancing	knowledge	sharing,
and	fostering	a	collaborative	team	environment.	Here	are	some	best	practices	specifically	tailored	for	Java	code	reviews:Reviewing	Code	EffectivelyEffective	code	review	goes	beyond	just	spotting	errors.	It	involves	understanding	the	codes	purpose	and	ensuring	it	aligns	with	the	projects	goals	and	coding	standards.Focus	on	Logic	and	Structure,	Not
Just	Syntax:	While	syntax	errors	are	important,	pay	more	attention	to	the	overall	logic	and	structure	of	the	code.	Check	if	the	code	is	well-organized,	modular,	and	follows	Javas	best	practices	like	proper	use	of	classes	and	interfaces,	and	efficient	memory	management.Understanding	Context:	Its	crucial	to	understand	the	context	of	the	changes.
Reviewers	should	familiarize	themselves	with	the	relevant	parts	of	the	codebase	to	provide	more	informed	feedback.Automated	Code	Analysis	Tools:	Utilize	tools	like	SonarQube	or	FindBugs	for	static	code	analysis.	These	can	automatically	detect	potential	bugs,	code	smells,	and	security	vulnerabilities,	allowing	reviewers	to	focus	on	more	complex
issues.Giving	and	Receiving	FeedbackThe	way	feedback	is	given	and	received	can	significantly	impact	the	effectiveness	of	code	reviews.Constructive	Feedback:	Feedback	should	be	constructive	and	aimed	at	improving	the	code.	Avoid	personal	comments	and	focus	on	the	code	and	its	improvement.Examples	of	Constructive	Feedback	in	Java	Code
Reviews:	For	instance,	if	you	notice	an	inefficient	use	of	collections,	suggest	an	alternative	approach	and	explain	why	its	more	efficient.Encouraging	Discussion:	Foster	a	culture	where	developers	feel	comfortable	discussing	suggestions	and	explaining	their	reasoning.Handling	Larger	Code	Bases	and	Complex	ChangesReviewing	large	commits	or
complex	code	changes	can	be	challenging	but	is	common	in	Java	projects	due	to	the	nature	of	the	language.Strategies	for	Reviewing	Large	Commits:	Break	down	large	commits	into	smaller,	manageable	parts.	If	a	commit	touches	multiple	areas,	consider	having	multiple	reviewers	with	expertise	in	each	area.Tackling	Complex	Code:	For	complex
changes,	it	might	be	beneficial	to	have	a	walkthrough	or	a	pair	programming	session.	This	helps	in	understanding	the	rationale	behind	the	changes	and	ensures	that	the	reviewer	and	the	author	are	on	the	same	page.Continuous	Learning	and	ImprovementCode	reviews	are	a	learning	process	for	both	authors	and	reviewers.Learning	from	Each	Review:
Encourage	team	members	to	view	code	reviews	as	learning	opportunities.	Discussing	different	approaches	and	solutions	helps	in	broadening	knowledge	and	skills.Regularly	Reviewing	the	Review	Process:	Periodically	assess	the	effectiveness	of	your	code	review	process	and	make	adjustments	as	necessary.	This	can	involve	changing	the	tools	used,	the
way	feedback	is	given,	or	the	checklist	items.Common	Pitfalls	and	How	to	Avoid	ThemCode	reviews,	while	essential,	can	sometimes	be	fraught	with	challenges	that	can	hinder	their	effectiveness.	Recognizing	and	addressing	these	common	pitfalls	is	crucial	for	a	successful	code	review	process,	especially	in	Java	development,	which	often	involves
complex	code	structures.Overcoming	Common	Challenges	in	Code	ReviewsEvery	team	encounters	obstacles	in	code	reviews.	Addressing	these	head-on	improves	the	process	and	outcomes.Avoiding	Nitpicking:	Its	easy	to	get	caught	up	in	minor	issues	that	dont	significantly	impact	the	overall	quality	of	the	code.	Focus	on	issues	that	genuinely	matter
for	the	projects	success.	Use	a	linter	or	automated	code	formatter	to	handle	trivial	style	issues.Balancing	Between	Overly	Critical	and	Too	Lenient	Reviews:	Finding	the	right	balance	in	code	reviews	is	crucial.	Be	thorough	but	also	practical.	Not	every	code	piece	needs	to	be	perfect;	it	needs	to	be	good	enough	for	the	projects	current	stage	and
context.Time	Management	and	EfficiencyEfficiently	managing	time	during	code	reviews	ensures	that	they	are	effective	without	becoming	a	bottleneck	in	the	development	process.Setting	Realistic	Timeframes	for	Reviews:	Allocate	a	reasonable	amount	of	time	for	code	reviews	and	stick	to	it.	Lengthy	reviews	can	be	counterproductive.Streamlining	the
Review	Process	Without	Compromising	Quality:	Develop	a	process	that	is	thorough	yet	efficient.	This	can	include	using	checklists,	automated	tools,	and	dividing	large	reviews	among	multiple	reviewers.Handling	Disagreements	ConstructivelyDisagreements	are	inevitable	in	code	reviews,	but	they	can	be	handled	constructively.Fostering	a	Positive
Environment	for	Discussion:	Encourage	open	and	respectful	discussions.	Disagreements	should	be	about	the	code,	not	the	coder.Finding	Compromises:	When	disagreements	arise,	focus	on	finding	a	compromise	that	aligns	with	the	project	goals.	Sometimes,	this	might	involve	deferring	to	a	team	lead	or	voting	on	a	particular	approach.Recognizing	and
Adapting	to	Different	Skill	LevelsIn	a	team,	developers	will	have	varying	levels	of	expertise,	which	can	impact	the	review	process.Tailoring	Feedback	to	the	Developers	Skill	Level:	Adjust	the	depth	and	nature	of	your	feedback	based	on	the	developers	experience.	Offer	more	guidance	and	explanations	to	less	experienced	developers.Encouraging
Continuous	Learning:	Promote	an	environment	where	developers	of	all	levels	can	learn	and	improve	through	code	reviews.	This	might	involve	pairing	less	experienced	developers	with	more	seasoned	ones	during	reviews.ConclusionEffective	Java	code	reviews	are	a	crucial	component	of	the	software	development	process.	They	not	only	enhance	code
quality	and	reduce	the	likelihood	of	bugs	but	also	foster	a	culture	of	collaboration	and	continuous	learning	within	development	teams.	By	understanding	the	importance	of	code	reviews,	setting	up	a	thorough	review	process,	adhering	to	best	practices,	and	avoiding	common	pitfalls,	teams	can	significantly	improve	their	Java	development
efforts.Remember,	the	key	to	successful	code	reviews	lies	in	constructive	feedback,	efficient	processes,	and	a	commitment	to	ongoing	improvement.	As	technologies	and	practices	evolve,	so	should	your	approach	to	code	reviews.	Regularly	revisiting	and	refining	your	code	review	practices	will	ensure	they	remain	effective	and	aligned	with	your	teams
goals.Through	mindful	implementation	and	continuous	refinement	of	these	practices,	teams	can	reap	the	full	benefits	of	code	reviews,	resulting	in	strong,	efficient,	and	maintainable	Java	applications.Oracles	Java	DocumentationGitHubs	Pull	Request	GuidelinesSonarQube	This	Java	code	review	checklist	is	not	only	useful	during	code	reviews,	but	also
to	answer	an	important	Java	job	interview	question,Q.	How	would	you	go	about	evaluating	code	quality	of	others	work?This	can	judge	a	candidates	real	experience	&	technical	hows.You	also	learn	a	lot	from	peer	code	reviews.	What	has	been	written	well?	Why	was	it	done	this	way?	Could	this	have	been	written	differently?,	etc.	This	is	one	of	the
benefits	of	volunteering	to	review	code	via	open-source	project	contribution.FunctionalityChecklistDescription/exampleFunctionality	is	implemented	in	a	simple,	maintainable,	and	reusable	manner.Keep	in	mind	some	of	the	design	principles	like	SOLID	design	principles,	Dont	Repeat	Yourself	(DRY),	and	Keep	It	Simple	ans	Stupid	(KISS).Also,	think
about	the	OO	concepts	A	PIE.	Abstraction,	Polymorphism,	Inheritance,	and	Encapsulation.	These	principles	and	concepts	are	all	about	accomplishing	Low	coupling	and	High	cohesion.Apply	functional	programming	(FP)	paradigm	where	it	makes	more	sense.ChecklistDescription/exampleUse	of	descriptive	and	meaningful	variable,	method	and	class
names	as	opposed	to	relying	too	much	on	comments.E.g.	calculateGst(BigDecimal	amount),	BalanceLoader.java,	etc.Bad:	List	list;Good:	List	users;Class	and	functions	should	be	small	and	focus	on	doing	one	thing.	No	duplication	of	code.E.g.	CustomerDao.java	for	data	access	logic	only,	Customer.java	for	domain	object,	CustomerService.java	for
business	logic,	and	CustomerValidator.java	for	validating	input	fields,	etc.Similarly,	separate	functions	like	processSalary(String	customerCode)	will	invoke	other	sub	functions	with	meaningful	names	likeevaluateBonus(String	customerCode),evaluateLeaveLoading(String	customerCode),	etcFunctions	should	not	take	too	many	input	parameters.Bad:
processOrder(String	customerCode,	String	customerName,	String	deliveryAddress,	BigDecimal	unitPrice,	int	quantity,	BigDecimal	discountPercentage);Good:	processOrder(CustomerDetail	customer,	OrderDetail	order);where	CustomerDetail	is	a	value	object	with	attributes	like	customerCode,	customerName,	etc.Use	a	standard	code	formatting
template.Share	the	template	across	the	development	team.Declare	the	variables	with	the	smallest	possible	scope.For	example,	if	a	variable	tmp	is	used	only	inside	a	loop,	then	declare	it	inside	the	loop,	and	not	outside.Dont	preserve	or	create	variables	that	you	dont	use	again.E.g.	instead	of	boolean	removed	=	myItems.remove(item);	return
removed;Do:	return	myItems.remove(item);Omit	needless	and	commented	out	code.	No	System.out.println	statements	either.You	have	source	control	for	the	history.	Use	proper	logging	frameworks	like	slf4j	and	logback	for	logging.FundamentalsChecklistDescription/exampleMake	a	class	final	and	the	object	immutable	where	possible.Immutable
classes	are	inherently	thread-safe	and	more	secured.	For	example,	the	Java	String	class	is	immutable	and	declared	as	final.Minimize	the	accessibility	of	the	packages,	classes	and	its	members	like	methods	and	variables.E.g.	private,	protected,	and	public	access	modifiers.Code	to	interface	as	opposed	to	implementation.Bad:	ArrayList	names	=	new
ArrayList();Good:	List	names	=	new	ArrayList();Use	right	data	types.For	example,	use	BigDecimal	instead	of	floating	point	variables	like	float	or	double	for	monetary	values.	Use	enums	instead	of	int	constants.Avoid	finalizers	and	properly	override	equals,	hashCode,	and	toString	methods.The	equals	and	hashCode	contract	must	be	correctly
implemented	to	prevent	hard	to	debug	defects.Write	fail-fast	code	by	validating	the	input	parameters.Apply	design	by	contract.Return	an	empty	collection	or	throw	an	exception	as	opposed	to	returning	a	null.	Also,	be	aware	of	the	implicit	autoboxing	and	unboxing	gotchas.NullpointerException	is	one	of	the	most	common	exceptions	in	Java.Key	Areas
like	Security,	Exception	Handling,	Performance,	Memory/Resource	leaks,	Concurrency,	etcChecklistDescription/exampleDont	log	sensitive	data.Security.Clearly	document	security	related	information.Security.Sanitize	user	inputs.Security.Favor	immutable	objects.Security.Use	Prepared	statements	as	opposed	to	ordinary	statements.Security	to
prevent	SQL	injection	attack.Release	resources	(Streams,	Connections,	etc).Security	to	prevent	denial	of	service	attack	(DoS)	and	resource	leak	issues.Dont	let	sensitive	information	like	file	paths,	server	names,	host	names,	etc	escape	via	exceptions.Security	and	Exception	Handling.Follow	proper	security	best	practices	like	SSL	(one-way,	two-way,
etc),	encrypting	sensitive	data,	authentication/authorization,	etc.Security.Use	exceptions	as	opposed	to	return	codes.Exception	Handling.Dont	ignore	or	suppress	exceptions.	Standardize	the	use	of	checked	and	unchecked	exceptions.	Throw	exceptions	early	and	catch	them	late.Exception	Handling.Write	thread-safe	code	with	proper	synchronization
and	use	of	immutable	objects.	Also,	document	thread-safety.Concurrency.Keep	synchronization	section	small	and	favor	the	use	of	the	new	concurrency	libraries	to	prevent	excessive	synchronization.Concurrency	and	Performance.Reuse	objects	via	flyweight	design	pattern.Performance.Presence	of	long	lived	objects	like	ThreadLocal	and	static
variables	holding	references	to	lots	of	short	lived	objects.Memory	Leak	and	PerformanceBadly	constructed	SQL,	REGEX,	etc.Performance.	E.g.	Cartesian	joins	in	SQL	and	back	tracking	regular	expressions.Inefficient	Java	coding	and	algorithms	in	frequently	executed	methods	leading	to	death	by	thousand	cuts.PerformanceOther	general
programmingChecklistDescription/exampleFavor	using	well	proven	frameworks	and	libraries	as	opposed	to	reinventing	the	wheel	by	writing	your	own.E.g.	Apache	commons	libraries,	Google	Gauva	libraries,	Spring	libraries,	XML/JSON	libraries,	etc.Presence	of	JUnit	and	JBehave	test	cases.Check	the	test	coverage	and	quality	of	the	unit	tests	with
proper	mock	objects	to	be	able	to	easily	maintain	and	run	independently/repeatedly.Test	only	a	unit	of	code	at	a	time	(e.g.	one	function).Unit	tests	must	be	independent	of	each	other.	They	should	run	independently.Set	up	should	not	be	too	complicated.Mockout	external	states	and	services	that	you	are	not	asserting.	For	example,	retrieving	data	from
a	database.Avoid	unneccessary	assertions.Start	with	functions	that	have	the	fewest	dependencies,	and	work	your	way	up.Write	unit	tests	for	negative	scenarios	like	throwing	exceptions,	negative	values,	null	values,	etc.Dont	have	try/catch	inside	unit	tests.	Use	throws	Exception	statement	in	test	case	declaration	itself.Dont	have	any
System.out.println(..)Ensure	that	the	unit	tests	are	written	properly.Dont	write	unit	tests	for	the	sake	of	writing	one.Presence	of	hard	coded	config	values.Externalize	configuration	data	in	a	.properties	file.	Sensitive	information	like	password	must	be	encrypted.Presence	and	implementation	of	non	functional	requirements	like	archiving,	auditing,	and
purging	data	and	application	monitoring	where	required.It	is	easy	to	ignore	these	non	functional	requirements.	Doing	code	reviews	(or	peer	reviews)	for	your	Java	codebase?	Here's	our	collection	of	tips	to	make	you	an	even	better	reviewer.What	should	be	on	your	code	review	checklist?Understandability	Just	based	on	the	term	code	review	,	you	may
immediately	think	of	"looking	for	bugs"	when	hearing	the	term.	While	this	is	on	our	list,	we'd	argue	reading	the	code	with	a	focus	on	understandability	(and	readability)	may	be	even	more	valuable!Naming:	As	you	know,	naming	things	is	hard,	so	be	sure	to	double-checkHelpful	commentsOpportunities	to	introduce	(or	use)	utility	methodsFor	example,
let's	imagine	we	encounter	the	following	code	snippet	during	our	review:String	url	=	getUrl();if	(url.startsWith("https://"))	{	url	=	"https://"	+	url;}With	a	helper	method	in	place,	we	can	reduce	this	toString	url	=	StringUtils.ensureStartsWith(getUrl(),	"https://");While	this	may	not	seem	like	much,	small	improvements	like	this	add	up	quickly.	This
means	there	is	less	code	to	maintain,	and	(hopefully)	less	bugs	as	you	can	rely	on	"battle-tested"	parts	of	your	code	base.Consistency	Doing	things	consistently	helps	you	and	your	team	to	find	your	way	around	different	the	areas	of	your	codebase	-	even	the	ones	that	you've	never	worked	on	before.There	are	quite	a	few	aspects	around	consistency,	and
maybe	of	them	can	(and	should)	be	checked	by	linters,	not	humans.But	even	with	tools	in	place,	there	are	still	things	you	can	look	out	for	in	your	code	review.Bugs	This	one	is	obvious.	Of	course,	code	reviews	are	a	big	opportunity	to	spot	bugs	early	and	before	they	land	in	production.Let's	consider	this	example:public	boolean	isValidUrl(String	url)	{
return	url.startsWith("http://");}As	an	attentive	reviewer,	you'll	probably	see	that	this	method	will	return	false	for	URLs	that	use	HTTPS,	which	is	probably	not	what	we	want.So	take	your	time,	focus	on	the	code,	and	think	about	edge	cases	or	scenarios	that	may	not	be	handled	correctly	the	code	yet.Tests	Were	any	tests	added	(or	adapted)	with	the
code	changes?	If	not,	this	may	be	a	good	opportunity	to	clarify	with	the	implementor	if	they	can	add	additional	tests,	for	example	using	JUnit	(unit	tests)	or	Selenium	(end-to-end	tests).Sure,	this	may	mean	that	the	feature	/	bugfix	will	not	be	merged	right	away.	But	this	will	prevent	regression	bugs,	and	everyone	on	your	team	will	feel	more	confident
with	the	stability	of	your	software.Performance	Let's	consider	this	simple	example:for	(File	inputFile	:	listInputFiles())	{	Parser	parser	=	createParser(getOutputFolder());parser.parseFile(inputFile);}Reading	the	code	carefully,	we	can	see	that	parser	is	re-created	on	every	loop	iteration,	but	it	is	not	dependent	on	the	loop	at	all	(for	the	sake	of	this
example,	let's	assume	that	parseFile()	has	no	side	effects	we	need	to	worry	about).This	means	that	as	a	reviewer,	you	could	suggest	to	move	the	createParser()	call	out	of	the	loop.What	should	NOT	be	on	your	code	review	checklist?Now	that	we	know	what	to	look	for	during	a	code	review,	what	should	we	(probably)	not	put	onto	our	review	checklist?
Anything	that	can	be	automated	This	is	probably	the	most	important	rule	of	code	reviews:Automate	all	checks	that	can	be	automatedThis	includes	things	like:	Nitpicking	Nitpicking	(sometimes	abbreviated	with	NIT)	means	pointing	out	trivial	or	unimportant	things	during	code	reviews.While	there	is	no	clear	definition	of	what	exactly	is	(not)
nitpicking,	let's	just	bring	a	little	common	sense.	Code	reviews	are	important,	but	they	shouldn't	slow	you	down	unnecessarily.Here's	an	hypothetical	example:	public	static	void	readInputFiles(String	folder)	{}Please	don't	be	like	that	Summary	Code	reviews	for	your	Java	code	can	be	a	super	power	if	everybody	involved	understands	what	(and	what
NOT)	to	look	for.Focus	on	consistency,	performance,	testing,	and	other	topics	that	you	(as	a	human)	can	judge	best.	Have	automation	in	place	where	possible,	and	don't	waste	everyone's	time	with	useless	discussions	about	trivial	things.	Are	you	looking	for	a	Java	code	review	checklist?According	to	a	survey,	developers	spend	45%	of	their	time	fixing
bugs	rather	than	writing	new	code.	Strict	code	reviews	allow	developers	to	spend	less	time	resolving	bugs	and	delivering	new	features.Developing	a	Java	application	requires	a	deep	understanding	of	object-oriented	programming,	Java	language,	tools	like	Eclipse	IDE,	Java	Standard	Library,	Git	version	control,	and	frameworks	like	Hibernate,	Spring
Boot,	etc.	You	also	require	skills	in	database	management,	like	JDBC	(Java	Database	Connectivity)	and	ORM	(object-relational	mapping),	application	security	practices,	performance	optimization,	etc.If	you	dont	have	a	professional	team	with	this	relevant	expertise	to	take	on	the	task,	then	submit	a	request	for	a	complimentary	discovery	call,	and	one	of
our	tech	account	managers	who	managed	similar	projects	will	contact	you	shortly.Lets	discuss	Java	code	review	checklist	items	to	ensure	a	well-written,	functional,	and	maintainable	software	application.	Get	a	complimentary	discovery	call	and	a	free	ballpark	estimate	for	yourproject	Trusted	by	100x	of	startups	and	companies	like	Java	Code	Review
ChecklistCheck	off	the	following	when	performing	a	Java	code	review:Functional	checks	ensure	the	software	works	as	intended.	Review	the	following:The	code	logic	correctly	implements	the	required	functionality.	Check	input	validation	and	output	accuracy.	The	code	should	validate	input	values	to	avert	unexpected	behavior,	data	corruption,	etc.,
and	verify	the	actual	output	matches	the	expected	outcome.	There	are	no	functional	regressions	or	inconsistencies	in	case	of	changes	to	the	existing	code.	The	functionality	is	implemented	in	a	simple	and	reusable	manner.	Check	for	the	following	design	principles:DRY	(Dont	Repeat	Yourself),	SOLID	(Single-responsibility	Principle,	Open-closed
Principle,	Liskov	Substitution	Principle,	Interface	Segregation	Principle,	and	Dependency	Inversion	Principle),	etc.	Observe	object-oriented	principles	of	Abstraction,	Polymorphism,	Inheritance,	and	Encapsulation.You	should	check	for	the	following	to	ensure	a	clean	code:Follow	Java	code	conventions	to	enhance	code	readability.	All	package	names	in
Java	are	written	in	lower	case,	all	constants	in	upper	case,	variables	in	CamelCase,	etc.	Use	meaningful	and	descriptive	names	instead	of	relying	on	comments	to	understand	code.	For	example,	calculateTax(BigDecimal	amount).There	should	be	no	code	duplication.	Classes	and	methods	should	focus	on	one	functionality.	Declare	variables	with	the
smallest	scope.	E.g.,	if	a	variable	is	used	inside	a	loop,	declare	it	inside	the	loop.	Developers	should	follow	a	single	code	formatting	template.Minimize	using	one-liners,	especially	with	variable	initialization	and	operation	in	the	same	line.For	instance,	write	the	following	code:System.out.println(attrs.get("offset")	+	"-"	+	Math.min(attrs.get("count"),
attrs.get("offset")	+	attrs.get("max"))	+	"	"	+	title	+	"	"	+	attrs.get("count"));As:int	start	=	attrs.get("offset");int	total	=	attrs.get("count");int	end	=	Math.min(total,	start	+	attrs.get("max"));System.out.println(start	+	"-"	+	end	+	"	"	+	title	+	"	"	+	total);Use	white	spaces	to	separate	code	for	better	readability.For	example,	write	this:
Integer.valueOf(params.offset?params.offset:attrs.offset)As:Integer.valueOf(params.offset	?	params.offset	:	attrs.offset)Generally,	white	spaces	are	not	added	in	parentheses.	E.g.,	if	(total	>	0)	instead	of	if	(	total	>	0	)Consider	the	following	for	a	clean	code:Remove	unnecessary	comments	or	obsolete	code.	Use	@deprecated	annotation	for	variables	or
methods	that	are	to	be	removed	and	will	not	be	used	in	the	future.	Remove	hard-coded	variables.	Use	switch	case	instead	of	multiple	if	else	conditions.	Use	logging	instead	of	console	print	statements	(SOPs).These	include	the	following:Make	objects	immutable	where	possible.	Immutable	objects	are	thread-safe	and	more	secure.Declare	classes	as	final
to	prevent	their	modification	after	initialization.	There	are	no	setter	methods	that	allow	modification	of	its	internal	states.	Mutable	objects	in	a	class	are	deep	copied	to	maintain	immutable	properties.	All	mutable	objects	are	initialized	within	the	constructor.	Immutable	variants	are	used	from	java.util	package	in	case	a	class	contains	collections.
Immutability	is	maintained	in	subclasses.Use	mutable	objects	when	they	serve	the	purpose	better.	For	example,	instead	of	creating	a	new	string	object	for	every	concatenation	operation,	use	a	mutable	object.Review	that	a	field	or	a	member	is	accessible	within	its	own	class,	subclass,	and	classes	within	the	same	package.	Ensure	the	following	for
protected	accessibility:	Hire	expert	software	developers	for	your	next	project	62	Expert	dev	teams,	1,200	top	developers	350+	Businesses	trusted	us	since	2016	Use	of	a	protected	modifier	when	required	by	code	design.	Protected	members	are	used	for	polymorphism	and	inheritance	purposes	for	code	reusability.	The	use	of	protected	members	does
not	introduce	tight	coupling.	Keep	everything	private	by	default	and	only	expose	methods	to	a	client	code	when	necessary.	Exposing	classes	or	methods,	for	instance,	via	a	public	modifier,	can	affect	code	encapsulation.	Another	dev	team	could	add	functionality	that	you	do	not	want,	etc.The	principle	of	code	to	interfaces	avoids	concrete
implementations	and	supports	programming	against	interfaces.	Consider	the	following	when	verifying	the	code-to-interface	principle	in	your	code:Classes	are	referencing	interfaces,	e.g.,	List,	Map,	etc.,	instead	of	ArrayList,	HashMap,	etc.,	as	they	introduce	tight	coupling.	Interfaces	allow	different	implementations	interchangeably	(polymorphism).
Dependency	injections	make	it	easier	to	modify	implementations.	There	is	easier	integration	of	third-party	libraries	or	new	components.	Interfaces	adhere	to	interface	segregation	principle	(ISP).Objects	that	are	equal	due	to	their	values	should	override	the	equals	methods	to	return	true	in	case	of	the	same	values.	The	equals	method	is	usually	used	for
comparison	and	equality	checks.	Therefore,	overriding	the	equals	method	is	essential.Each	Java	object	has	a	hash	code	value.	Two	equal	objects	must	have	the	same	hash	code.	Ensure	the	two	objects	are	equal	if	they	override	both	hashcode	and	equality	methods.Carefully	review	direct	references	to	fields	in	the	client	code.	Direct	references	can	be
manipulated	even	if	you	use	final.	Instead,	clone	a	reference	or	create	a	new	reference	and	then	assign	it	to	the	field.Consider	the	following	example:public	static	void	main(String[]	args)	{ImmutablePerson	person	=	new	ImmutablePerson("Alice");System.out.println("Original	name:	"	+	person.getName());//	Attempt	to	modify	the	reference	to	the
ImmutablePersonmodifyReference(person);//	Despite	the	field	being	final,	the	name	can	still	be	manipulated.System.out.println("Name	after	modification:	"	+	person.getName());}private	static	void	modifyReference(ImmutablePerson	person)	{//	The	final	field	"name"	is	not	being	modified	here.//	Instead,	a	new	reference	to	a	different
ImmutablePerson	object	is	assigned.person	=	new	ImmutablePerson("Bob");}}Although	the	field	is	declared	final,	the	reference	to	an	ImmutablePerson	object	can	be	reassigned	to	another	object.	It	indicates	the	reference	is	mutable.In	the	modifyReference	method,	a	new	ImmoytablePerson	object	is	created	and	assigned	to	the	person	reference.	This
does	not	modify	the	original	ImmutablePerson	object	referenced	by	the	person	reference	in	the	main	method.Stay	clear	of	NULL	pointer	exceptions.	Avoid	returning	null	values	when	possible.	A	good	practice	is	to	check	for	null	values	before	calling	a	method	to	avoid	NULL	pointer	exceptions.	Consider	the	following	code:boolean	isEven	=	item	%	2
==	0;	//	throws	NullPointerException	Write	the	above	code	as:	boolean	isEven	=	item	!=	null	&&	item	%	2	==	0	Consider	using	the	OPTIONAL	class	for	variables	that	may	have	invalid	states,	like	this:items.highest().ifPresent(integer	->	{boolean	isEven	=	integer	%	2	==	0;});@NULL	and	@NonNull	annotations	also	show	NULL	warnings	to
developers	while	building	the	code.	Ensure	closing	all	resources,	such	as	database	connections,	in	the	Finally	block	of	try-catch	exception	handling.	Consider	throwing	custom	exceptions	instead	of	generic	ones,	which	makes	it	easier	to	handle	and	debug	code.Use	checked	exceptions	for	recoverable	operations	and	runtime	exceptions	for
programming	errors.Consider	the	following	security	checks	when	reviewing	Java	code:Do	not	log	sensitive	information;	Use	immutable	objects;	Release	resources	after	use,	such	as	streams,	connections,	etc.,	to	prevent	issues	like	resource	leaks,	denial	of	service,	etc.	Include	sensitive	information	in	exception	blocks,	like	file	paths,	server	names,	etc.
Implement	security	practices	like	authorization,	authentication,	SSL	encryption,	etc.These	include	the	following:Leverage	ready-to-use	frameworks	and	libraries	instead	of	writing	all	the	code	from	scratch.Some	popular	Java	libraries	and	frameworks	include:Apache	Commons;	Guava;	Jackson;	Logback;	Hibernate	Validator;	Spring	Boot;	Spark;	Grails;
Apache	Struts,	etc.Use	appropriate	data	structures.	Java	programming	language	provides	collections	like	ArrayList,	LinkedList,	Vector,	Stack,	HashSet,	HashMap,	etc.	Your	developers	should	know	the	pros	and	cons	of	using	each.	For	example:	Hire	expert	software	developers	for	your	next	project	Map	data	structures	are	useful	for	unordered	items
that	require	efficient	retrieval,	insertion,	etc.	The	list	structure	is	commonly	used	for	ordered	items	that	could	contain	duplicate	values.	The	set	is	similar	to	the	List	but	without	duplicates.Also,	ensure	the	use	of	the	appropriate	data	types	in	your	code.	For	example,	use	BigDecimal	instead	of	float	or	double,	enums	for	int	constants,	etc.	Use	static
values,	dynamic	values,	database-driven	values,	etc.,	appropriately.Testing	code	modules	form	an	essential	part	of	a	Java	code	review	checklist.Review	the	use	of	unit	testing.	Developers	should	use	unit	test	cases	with	mock	objects	for	easy	and	repetitive	testing.	Unit	test	cases	should	run	independently	of	each	other.	Do	not	include	external	services,
such	as	data	retrieval	from	a	database,	in	unit	testing.Ensure	non-functional	requirements,	such	as	performance,	scalability,	monitoring,	etc.,	are	met.	Consider	the	following:Check	for	potential	bottlenecks,	excessive	resource	utilization,	etc.	Review	caching	mechanisms	for	performance.	Check	if	the	code	is	adjustable	for	future	scalability
requirements,	like	a	surge	in	user	traffic.	Ensure	the	application	handles	failures	gracefully	with	proper	recovery	processes	in	place.	Check	if	the	code	is	modular	without	excessive	complexity	for	easy	maintainability	in	the	future.Assess	if	your	Java	code	follows	the	separation	of	concerns	principle,	which	confirms	that	a	program	divides	into	separate
sections,	each	responsible	for	a	specific	functionality.	Consider	the	following	under	separation	of	concerns:Single	responsibility	principle	in	which	each	class	or	method	has	a	single	well-defined	responsibility.	The	layered	architecture	ensures	the	separation	of	presentation,	business	logic,	data	access,	etc.	Ensure	modules	follow	loose	coupling,	where
a	change	in	one	component	does	not	affect	others.	Aspect-oriented	programming	is	where	cross-cutting	aspects	of	an	application,	such	as	security,	logging,	etc.,	are	separate	from	core	features.Planning	for	a	Java	Code	Review?These	Java	code	review	checklist	items	will	help	you	deliver	high-quality	code	that	meets	all	the	functional	and	non-
functional	requirements.Code	review	is	a	critical	process	as	it	ensures	the	successful	deployment	of	software.	Expert	developers	conduct	successful	code	review	processes.	You	need	exceptional	Java	developers	to	plan	Java	application	design,	development,	testing,	and	deployment.If	you	do	not	find	high-quality	Java	developers	on	your	team,
DevTeam.Space	can	help	you	via	field-expert	software	developers.These	developers	can	help	you	with	smooth	product	development	and	comprehensive	code	reviews	owing	to	their	extensive	experience	building	cutting-edge	software	solutions	using	the	latest	technologies	and	tools.If	you	wish	to	know	more	about	how	we	can	help	you	with	Java
application	development	and	code	reviewing,	send	us	your	initial	project	specifications	via	this	quick	form.	One	of	our	account	managers	will	contact	you	shortly	for	further	discussion.1.	What	should	be	checked	in	a	Java	code	review?	A	good	Java	code	review	process	ensures	adherence	to	the	standards,	code	quality,	performance,	etc.	Check	for
programming	errors,	code	modularity,	functionality,	code	conventions,	security	practices,	runtime	exceptions,	unit	tests,	etc.	2.	How	to	check	Java	code	quality?	Developers	can	check	Java	code	quality	through	manual	code	reviews,	code	metrics	(complexity,	number	of	lines,	etc.),	established	programming	guidelines,	dependency	management,	code
refactoring,	etc.	3.	What	are	some	of	the	best	Java	code	review	tools?	Some	tools	to	review	Java	code	include	SonarQube,	CheckStyle,	ESLint	with	Java	Plugin,	Lint4j,	etc.	You	need	expert	developers	to	use	these	tools	and	conduct	static	code	analysis.	Find	experienced	developers	at	DevTeam.Space	for	detailed	code	reviews.	You	cant	perform	that
action	at	this	time.	

Java	source	code	review	checklist.	Code	review	java.	Selenium	java	code	review	checklist.	Java	code	review	checklist	pdf.	Code	review	checklist	and	best	practices	in	java.	Java	secure	code	review	checklist.	Java
review	checklist.	Java	spring	boot	code	review	checklist.	Code	review	checklist	javascript.	Code	review	checklist	java	spring.	Java	code	review	checklist	with	example.	Java	security	source	code	review	checklist.




